Skip to main content

Main data API used by DRE and MMS Tools & Subsystems

Project description

Meter Management System Client

The python implementation of the pf-dre-database repo provides a client for all Data interactions required with the Meter Management System:

  • Relational tables (Read Only)
  • Timescale DB (Read/Write - No insertion or deletion)
    • JSON Schema
    • Narrow Data Format Schema

This python implementation is to be built and deployed to PyPI for use across all python subsystems of the Demand Response Engine.

Real-Time Input Data Format

When issuing calls to the MMS which require a time series based DataFrame to be passed the format of the schema should be followed with the following general rules.

  • Timestamps are to be generated in string format following the ISO 8601 standard and to follow simple conventions should be kept in UTC format.
  • Any columns within the data structure which are a JSON datatype are to be created in serialized string format, not as a pure python dictionary.
import json
# Correct Format
correct_jsonb_value = json.dumps({'A': 'Dictionary', 'B': 'to', 'C': 'Send'})
# Incorrect Format
incorrect_jsonb_value = {'A': 'Dictionary', 'B': 'to', 'C': 'Send'}
Example Data Frame for a narrow column format schema
measurement_date device_id device_metric_type_id value
2020-01-01T12:00:00.000 1 P 1.0
2020-01-01T12:01:00.000 1 P 2.0
2020-01-01T12:00:00.000 1 Q -1.0
2020-01-01T12:01:00.000 1 Q -2.0
2020-01-01T12:00:00.000 2 P 10.0
2020-01-01T12:01:00.000 2 P 20.0
2020-01-01T12:00:00.000 2 Q -10.0
2020-01-01T12:01:00.000 2 Q -20.0
object (str) int64 object (str) float64
Example Data Frame for a JSON schema
measurement_date device_id metrics
2020-01-01T12:00:00.000 1 {"P": 1.0, "Q": -1.0, "S": 'NaN'}
2020-01-01T12:00:00.000 2 {"P": 2.0, "Q": -2.0}
2020-01-01T12:01:00.000 1 {"P": 10.0, "Q": -10.0}
2020-01-01T12:01:00.000 2 {"P": 20.0, "Q": -20.0}
object (str) int64 object (str)

Real-Time Standardized Output DataFrame Format

When issuing calls to the MMS which return a time series DataFrame, the client, regardless of schema will be constructed to return in a standardized format. This makes the reading and manipulation of data consistent.

device_id device_metric_type_id measurement_date value
1 P 2020-01-01T12:00:00.000 1001.0
2020-01-01T12:01:00.000 1012.0
Q 2020-01-01T12:00:00.000 12.132
2020-01-01T12:01:00.000 -2.132
2 P 2020-01-01T12:00:00.000 2001.0
2020-01-01T12:01:00.000 2012.0
Q 2020-01-01T12:00:00.000 22.132
2020-01-01T12:01:00.000 -3.132
int64 object (str) object (str) float64

The client also has the option of returing the data frame results in a raw, un-standardised format. In this case, the dataframe will be returned in the format of the underlying database schema without any alteration.

Forecast Input Data Format

When issuing calls to the MMS which require a forecast time series based DataFrame to be passed, the format of the schema should be followed with the following general rules.

  • Timestamps are to be generated in string format following the ISO 8601 standard and to follow simple conventions should be kept in UTC format.
  • Any columns within the data structure which are a JSON datatype are to be created in serialized string format, not as a pure python dictionary.
Example Data Frame for a narrow column format schema
received_date device_id device_metric_type_id measurement_date value
2020-01-01T12:00:00.000 1 P 2020-01-01T12:00:00.000 1.0
2020-01-01T12:00:00.000 1 P 2020-01-01T12:01:00.000 2.0
2020-01-01T12:00:00.000 1 P 2020-01-01T12:02:00.000 3.0
2020-01-01T12:00:00.000 1 Q 2020-01-01T12:00:00.000 -1.0
2020-01-01T12:00:00.000 1 Q 2020-01-01T12:01:00.000 -2.0
2020-01-01T12:00:00.000 1 Q 2020-01-01T12:02:00.000 -3.0
2020-01-01T12:01:00.000 1 P 2020-01-01T12:01:00.000 2.0
2020-01-01T12:01:00.000 1 P 2020-01-01T12:02:00.000 3.0
2020-01-01T12:01:00.000 1 P 2020-01-01T12:03:00.000 4.0
2020-01-01T12:01:00.000 1 Q 2020-01-01T12:01:00.000 -2.0
2020-01-01T12:01:00.000 1 Q 2020-01-01T12:02:00.000 -3.0
2020-01-01T12:01:00.000 1 Q 2020-01-01T12:03:00.000 -4.0
object (str) int64 object (str) object float64
Example Forecast Data Frame for a JSON schema
received_date device_id metrics
2020-01-01T12:00:00.000 1 { "P": {"2020-01-01T12:00:00+00:00": 1.0, "2020-01-01T12:01:00+00:00": 2.0, "2020-01-01T12:02:00+00:00": 3.0}, "Q": {"2020-01-01T12:00:00+00:00": -1.0, "2020-01-01T12:01:00+00:00": -2.0, "2020-01-01T12:02:00+00:00": -3.0, "2020-01-01T12:03:00+00:00": 'NaN'}}
2020-01-01T12:01:00.000 1 { "P": {"2020-01-01T12:01:00+00:00": 2.0, "2020-01-01T12:02:00+00:00": 3.0, "2020-01-01T12:03:00+00:00": 4.0}, "Q": {"2020-01-01T12:01:00+00:00": -2.0, "2020-01-01T12:02:00+00:00": -3.0, "2020-01-01T12:03:00+00:00": -4.0}}
object (str) int64 object

Forecast Standardized Output DataFrame Format

When issuing calls to the MMS which return a time series DataFrame, the client, regardless of schema will be constructed to return in a standardized format. This makes the reading and manipulation of data consistent.

received_date device_id device_metric_type_id measurement_date value
2020-01-01T12:00:00.000 1 P 2020-01-01T12:00:00.000 1.0
2020-01-01T12:01:00.000 2.0
2020-01-01T12:02:00.000 3.0
Q 2020-01-01T12:00:00.000 -1.0
2020-01-01T12:01:00.000 -2.0
2020-01-01T12:02:00.000 -3.0
2020-01-01T12:01:00.000 1 P 2020-01-01T12:01:00.000 2.0
2020-01-01T12:02:00.000 3.0
2020-01-01T12:03:00.000 4.0
Q 2020-01-01T12:01:00.000 -2.0
2020-01-01T12:02:00.000 -3.0
2020-01-01T12:03:00.000 -4.0
object (str) int64 object (str) object (str) float64

The client also has the option of returning the data frame results in a raw, un-standardised format by initializing the client with the argument: standardized=False In this case, the data frame will be returned in the format of the underlying database schema without any alteration.

Accessing Standardized DataFrame Contents

Real-time DataFrames python # Accessing Device Metric Timeseries time_series = df.loc[(1, 'P'), 'value'] time_series_times = df.loc[(1, 'P'), 'value'].index.values.tolist()) time_series_values = df.loc[(1, 'P'), 'value'].values.tolist()) # Accessing Most Recent Device Metric # (Note the standardized format is sorted in ascending order) latest_P = df.loc[(1, 'P'), 'value'].iloc[0] Forecast DataFrames

Prerequisites

  • Python 3.7.0+

Setup

The following environment variables are required in order to make use of the client.

  • PGDATABASE: The name of the MMS Database instance.
  • PGUSER: MMS Database user.
  • PGPASSWORD: MMS Database password.
  • PGHOST: MMS Database host.
  • PGPORT: MMS Database port (read/write permissions required).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pf_dre_database_client-0.4.14-py3-none-any.whl (44.4 kB view details)

Uploaded Python 3

File details

Details for the file pf_dre_database_client-0.4.14-py3-none-any.whl.

File metadata

  • Download URL: pf_dre_database_client-0.4.14-py3-none-any.whl
  • Upload date:
  • Size: 44.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.3

File hashes

Hashes for pf_dre_database_client-0.4.14-py3-none-any.whl
Algorithm Hash digest
SHA256 66c455ea98378422bcce5c7a52c3b1a6fbe9a044fde83369148772d5a612fb29
MD5 e205f24cbf4f57ff226a4390f74b28eb
BLAKE2b-256 03791dcf6c68dac378ffe74d333cfad1302bde0ffe1cb13fd5fd68e4115ef35e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page