Skip to main content

Main data API used by DRE and MMS Tools & Subsystems

Project description

Meter Management System Client

The python implementation of the pf-dre-database repo provides a client for all Data interactions required with the Meter Management System:

  • Relational tables (Read Only)
  • Timescale DB (Read/Write - No insertion or deletion)
    • JSON Schema
    • Narrow Data Format Schema

This python implementation is to be built and deployed to PyPI for use across all python subsystems of the Demand Response Engine.

Input Data Format

When issuing calls to the MMS which require a time series based DataFrame to be passed the format of the schema should be followed with the following general rules.

  • Timestamps are to be generated in string format following the ISO 8601 standard and to follow simple conventions should be kept in UTC format.
  • Any columns within the data structure which are a JSON datatype are to be created in serialized string format, not as a pure python dictionary.
    # Correct Format
    json_col = json.dumps({'A': 'Dictionary', 'B': 'to', 'C': 'Send'})
    # Incorrect Format
    json_col = {'A': 'Dictionary', 'B': 'to', 'C': 'Send'}
    
Example Data Frame for a narrow column format schema
measurement_date device_id device_metric_type_id value
2020-01-01T12:00:00.000 1 P 1.0
2020-01-01T12:01:00.000 1 P 2.0
2020-01-01T12:00:00.000 1 Q -1.0
2020-01-01T12:01:00.000 1 Q -2.0
2020-01-01T12:00:00.000 2 P 10.0
2020-01-01T12:01:00.000 2 P 20.0
2020-01-01T12:00:00.000 2 Q -10.0
2020-01-01T12:01:00.000 2 Q -20.0
object (str) int64 object (str) float64
Example Data Frame for a JSON schema
measurement_date device_id metrics
2020-01-01T12:00:00.000 1 {"P": 1.0, "Q": -1.0}
2020-01-01T12:00:00.000 2 {"P": 2.0, "Q": -2.0}
2020-01-01T12:01:00.000 1 {"P": 10.0, "Q": -10.0}
2020-01-01T12:01:00.000 2 {"P": 20.0, "Q": -20.0}
object (str) int64 object (str)

Standardized Output DataFrame Format

When issuing calls to the MMS which return a time series DataFrame, the client, regardless of schema will be constructed to return in a standardized format. This makes the reading and manipulation of data consistent.

device_id device_metric_type_id measurement_date value
1 P 2020-01-01T12:00:00.000 1001.0
2020-01-01T12:01:00.000 1012.0
Q 2020-01-01T12:00:00.000 12.132
2020-01-01T12:01:00.000 -2.132
2 P 2020-01-01T12:00:00.000 2001.0
2020-01-01T12:01:00.000 2012.0
Q 2020-01-01T12:00:00.000 22.132
2020-01-01T12:01:00.000 -3.132
int64 object (str) object (str) float64

The client also has the option of returing the data frame results in a raw, un-standardised format. In this case, the dataframe will be returned in the format of the underlying database schema without any alteration.

Prerequisites

  • Python 3.7.0+

Setup

The following environment variables are required in order to make use of the client.

  • PGDATABASE: The name of the MMS Database instance.
  • PGUSER: MMS Database user.
  • PGPASSWORD: MMS Database password.
  • PGHOST: MMS Database host.
  • PGPORT: MMS Database port (read/write permissions required).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pf_dre_database_client-0.3.0.dev5-py3-none-any.whl (37.6 kB view details)

Uploaded Python 3

File details

Details for the file pf_dre_database_client-0.3.0.dev5-py3-none-any.whl.

File metadata

  • Download URL: pf_dre_database_client-0.3.0.dev5-py3-none-any.whl
  • Upload date:
  • Size: 37.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.3

File hashes

Hashes for pf_dre_database_client-0.3.0.dev5-py3-none-any.whl
Algorithm Hash digest
SHA256 b5ddb79b28666d121e6283a68b9d7ab245689ea2370160d47fb9a15a4697e832
MD5 24df8b90c48a0ef75b80f217282576a3
BLAKE2b-256 757ba1efe612aa9234a1a0a3f4ae3b96cf7d5a8f5f97e59296e313d6c375e442

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page