A suite of utilities for PostgreSQL database queries and operations built on sqlalchemy
Project description
pg-database-utils
A suite of utilities for PostgreSQL database queries and operations built on sqlalchemy.
This library includes support for:
TSVECTOR
,JSON
andJSONB
indexes (for PostgreSQL versions 9.5+)- Generated columns (for PostgreSQL versions 12+)
- Optional Django database configuration for Django projects
It also includes:
- Helpers to make most common DDL queries more readable
- Performant functions for querying JSON and TSVECTOR columns
- Support for
SELECT INTO
queries from existing tables and/orVALUES
clauses - Support for
UPDATE
queries that require application logic
Installation
Install with:
pip install pg_database_utils
Configuration
This project is designed to make configuration easy. If you already have database connections defined in Django, then you can reuse them; otherwise, you can configure your own without having Django as a dependency.
To configure with Django
If you want to use the default database, there is nothing to do; otherwise:
- Create a JSON configuration file:
{
"django-db-key": "not_default"
}
- Set the
DATABASE_CONFIG_JSON
environment variable to point to the location of the file
Note: "django-db-key" takes precedence over all other database connection settings in the JSON file. If you specify a Django database, those database connection settings will be used.
To configure without Django
- Create a JSON configuration file with at least the required settings (i.e.
database-name
):
{
"database-name": "required", # Name of the database to query
"database-engine": "optional", # Defaults to postgres
"database-host": "optional", # Defaults to 127.0.0.1
"database-port": "optional", # Defaults to 5432
"database-user": "optional", # Defaults to postgres
"database-password": "optional" # For trusted users like postgres
}
- Set the
DATABASE_CONFIG_JSON
environment variable to point to the location of the file
Regardless of the above
Additional configuration options include:
{
"date-format": "optional", # Defaults to "%Y-%m-%d"
"timestamp-format": "optional" # Defaults to "%Y-%m-%d %H:%M:%S"
}
Note: "date-format" and "timestamp-format" must be compatible with the formatting configured in PostgreSQL.
Usage
This library is designed to make common database operations easy and readable,
so most of the utility functions are designed to work with either strings or sqlalchemy
objects as parameters.
Schema utilities
- Creating and relating tables
from pg_database import schema
my_table = schema.create_table(
"my_table",
dropfirst=True,
index_cols={"id": "unique"},
id="int", name="int", addr="text", geom="bytea", deleted="bool"
)
schema.create_index(my_table, "name", index_op="unique")
schema.create_table("other_table", id="int", my_table_id="int", val="text")
schema.create_foreign_key("other_table", "my_table_id", "my_table.id")
- Altering tables
from pg_database import schema
schema.alter_column_type("my_table", "name", "text")
schema.create_index("my_table", "name", index_op="to_tsvector")
schema.create_column("my_table", "json_col", "jsonb", checkfirst=True)
schema.create_index("my_table", "json_col", index_op="json_full")
# These steps require the postgis extension
schema.alter_column_type("my_table", "geom", "geometry", using="geometry(Polygon,4326)")
schema.create_index("my_table", "geom", index_op="spatial")
- Dropping database objects
from pg_database import schema
all_tables = schema.get_metadata().tables
other_table = all_tables["other_table"]
schema.drop_foreign_key(other_table, "other_table_my_table_id_fkey")
schema.drop_index("my_table", index_name="my_table_json_col_json_full_idx")
schema.drop_table("my_table")
schema.drop_table(other_table)
SQL utilities
- Inserting rows
import json
from datetime import datetime, timedelta
from pg_database import sql
create_date = datetime.now()
sql.select_into(
"new_table",
[
(1, "one", {}, create_date),
(2, "two", {}, create_date),
(3, "three", {}, create_date)
],
"id,val,json,created",
"int,text,jsonb,date"
)
- Updating rows
from pg_database import sql
def update_row(row):
row = list(row)
pk, val, created, jval = row[0], row[1], row[2], row[3]
row[1] = f"{pk} {val} first batch"
row[2] = created + timedelta(days=1)
row[3] = {"id": pk, "val": val, "batch": "first"}
return row
sql.update_rows("new_table", "id", "val,created,json", update_row, batch_size=3)
- Querying rows
from pg_database import sql, schema
# Reduce database queries by sending a sqlalchemy table
all_tables = schema.get_metadata().tables
new_table = all_tables["new_table"]
schema.create_index(new_table, "json", index_op="json_path")
schema.create_index(new_table, "val", index_op="to_tsvector")
sql.query_json_keys(new_table, "json", {"batch": "first"})
sql.query_tsvector_columns("new_table", "val", "batch first")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for pg_database_utils-0.5-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a611a87d17cbd9b772f3e5eaca386779f818df816ba52f4fe80b25439d37162a |
|
MD5 | d503740a0503a03d14905fb26a421a8b |
|
BLAKE2b-256 | 9e09bd37d6516688e6909ec4ebc5d246114a6d137963c531f79ce1f589b81dc6 |