Skip to main content

A suite of utilities for PostgreSQL database queries and operations built on sqlalchemy

Project description

pg-database-utils

Build Status Coverage Status

A suite of utilities for PostgreSQL database queries and operations built on sqlalchemy.

This library includes support for:

  1. TSVECTOR, JSON and JSONB indexes (for PostgreSQL versions 9.5+)
  2. Generated columns (for PostgreSQL versions 12+)
  3. Optional Django database configuration for Django projects

It also includes:

  1. Helpers to make most common DDL queries more readable
  2. Performant functions for querying JSON and TSVECTOR columns
  3. Support for SELECT INTO queries from existing tables and/or VALUES clauses
  4. Support for UPDATE queries that require application logic

Installation

Install with:

pip install pg-database-utils

Configuration

This project is designed to make configuration easy. If you already have database connections defined in Django, then you can reuse them; otherwise, you can configure your own without having Django as a dependency.

To configure with Django

If you want to use the "default" database, no configuration is required.

If you want to specify a particular Django database to read settings from:

  1. Create a JSON configuration file with the database name:
{
    "django-db-key": "other",               # To override DATABASES["default"]
    "connect-args": {"sslmode": "require"}  # To override DATABASES["<db_name>"]["OPTIONS"]
}
  1. Set the DATABASE_CONFIG_JSON environment variable to point to the location of the file

Note: "django-db-key" takes precedence over all other database connection settings in the JSON file. If you specify a Django database, those database connection settings will be used.

To configure without Django

  1. Create a JSON configuration file with at least the required settings (i.e. database-name):
{
    "database-name": "required",     # Name of the database to query
    "database-engine": "optional",   # Defaults to postgres
    "database-host": "optional",     # Defaults to 127.0.0.1
    "database-port": "optional",     # Defaults to 5432
    "database-user": "optional",     # Defaults to postgres
    "database-password": "optional"  # For trusted users like postgres
}
  1. Set the DATABASE_CONFIG_JSON environment variable to point to the location of the file

Additional configuration with or without Django

Additional configuration options include:

{
    "connect-args": {"sslmode": "require"},  # Defaults to postgres settings, "prefer" by default
    "date-format": "optional",               # Defaults to "%Y-%m-%d"
    "timestamp-format": "optional",          # Defaults to "%Y-%m-%d %H:%M:%S"
    "pooling-args": {                        # To override sqlalchemy pooling config
        "max_overflow": 0,                   # Defaults to 10 connections beyond pool size
        "pool_recycle": 60,                  # Defaults to no timeout (-1) in seconds
        "pool_size": 20,                     # Defaults to 5 connections
        "pool_timeout": 30                   # Defaults to 30 seconds
     }
}

Note: "date-format" and "timestamp-format" must be compatible with the formatting configured in PostgreSQL.

Usage

This library is designed to make common database operations easy and readable, so most of the utility functions are designed to work with either strings or sqlalchemy objects as parameters.

Schema utilities

  • Creating and relating tables
from pg_database import schema

my_table = schema.create_table(
    "my_table",
    dropfirst=True,
    index_cols={"id": "unique"},
    id="int", name="int", addr="text", geom="bytea", deleted="bool"
)
schema.create_index(my_table, "name", index_op="unique")

schema.create_table("other_table", id="int", my_table_id="int", val="text")
schema.create_foreign_key("other_table", "my_table_id", "my_table.id")
  • Altering tables
from pg_database import schema

schema.alter_column_type("my_table", "name", "text")
schema.create_index("my_table", "name", index_op="to_tsvector")

schema.create_column("my_table", "json_col", "jsonb", checkfirst=True)
schema.create_index("my_table", "json_col", index_op="json_full")

# These steps require the postgis extension
schema.alter_column_type("my_table", "geom", "geometry", using="geom::geometry(Polygon,4326)")
schema.create_index("my_table", "geom", index_op="spatial")
  • Dropping database objects
from pg_database import schema

all_tables = schema.get_metadata().tables
other_table = all_tables["other_table"]

schema.drop_foreign_key(other_table, "other_table_my_table_id_fkey")
schema.drop_index("my_table", index_name="my_table_json_col_json_full_idx")
schema.drop_table("my_table")
schema.drop_table(other_table)

SQL utilities

  • Inserting rows
import json
from datetime import datetime, timedelta
from pg_database import sql

create_date = datetime.now()

sql.select_into(
    "new_table",
    [
        (1, "one", {}, create_date),
        (2, "two", {}, create_date),
        (3, "three", {}, create_date)
    ],
    "id,val,json,created",
    "int,text,jsonb,date"
)
  • Updating rows
from pg_database import sql

def update_row(row):
    row = list(row)
    pk, val, created, jval = row[0], row[1], row[2], row[3]
    row[1] = f"{pk} {val} first batch"
    row[2] = created + timedelta(days=1)
    row[3] = {"id": pk, "val": val, "batch": "first"}
    return row

sql.update_rows("new_table", "id", "val,created,json", update_row, batch_size=3)
  • Querying rows
from pg_database import sql, schema

# Reduce database queries by sending a sqlalchemy table
all_tables = schema.get_metadata().tables
new_table = all_tables["new_table"]

schema.create_index(new_table, "json", index_op="json_path")
schema.create_index(new_table, "val", index_op="to_tsvector")

sql.query_json_keys(new_table, "json", {"batch": "first"})
sql.query_tsvector_columns("new_table", "val", "batch first")
  • Values clause for INSERTs or SELECT INTO, with custom connection arguments at execution time
from datetime import datetime
from sqlalchemy import column
from sqlalchemy.sql import Insert, Select
from pg_database import sql, schema

# Prepare data, column names, column types and table name

create_date = datetime.now()

values_data = [
    (1, "one", {}, True, create_date),
    (2, "two", {}, False, create_date),
    (3, "three", {}, 0, create_date)
]
values_names = ["id", "val", "json", "boolean", "created"]
values_types = ["int", "text", "jsonb", "bool", "date"]
values_table = "values_table"

# SELECT INTO to create a new table from raw values using sslmode==require

select_vals = sql.Values(values_names, values_types, *values_data)
select_into = sql.SelectInto([column(c) for c in values_names], values_table)
with schema.get_engine(connect_args={"sslmode": "require"}).connect() as conn:
    conn.execute(select_into.select_from(select_vals).execution_options(autocommit=True))

# INSERT INTO to add new records from raw values using custom pooling args

existing_table = schema.get_metadata().tables[values_table]

insert_vals = sql.Values(values_names, values_types, *values_data)
insert_from = Select([column(c) for c in values_names]).select_from(insert_vals)
insert_into = Insert(existing_table).from_select(names=values_names, select=insert_from)
with schema.get_engine(pooling_args={"pool_size": 20, "max_overflow": 0}).connect() as conn:
    conn.execute(insert_into.execution_options(autocommit=True))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pg-database-utils-0.8.1.tar.gz (36.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pg_database_utils-0.8.1-py3-none-any.whl (38.8 kB view details)

Uploaded Python 3

File details

Details for the file pg-database-utils-0.8.1.tar.gz.

File metadata

  • Download URL: pg-database-utils-0.8.1.tar.gz
  • Upload date:
  • Size: 36.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.5

File hashes

Hashes for pg-database-utils-0.8.1.tar.gz
Algorithm Hash digest
SHA256 c89747f76d7d53f00ed4c4cbe18da2e2d93ae0626285e7365e08dbb74b4a3486
MD5 5b7e3a8bdb148b917de2abe2f48205db
BLAKE2b-256 6c88834d822ab03d71749a9aa6e89b4fc9d434429b0265c9160e3cccec444d8d

See more details on using hashes here.

File details

Details for the file pg_database_utils-0.8.1-py3-none-any.whl.

File metadata

  • Download URL: pg_database_utils-0.8.1-py3-none-any.whl
  • Upload date:
  • Size: 38.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.5

File hashes

Hashes for pg_database_utils-0.8.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3544b87f60d419d257c39aa3fa346acc14fd2b0fdbc5d7cc831835c0e8d4b8d5
MD5 21d3c9bdbeb0504f158a77458f55f5d9
BLAKE2b-256 4924cdbff99dde7ec00da23f9de5600dc932a328e88b93e2ae117bd6089d70bc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page