Skip to main content

GPU/TPU-accelerated parallel game simulators for reinforcement learning (RL)

Project description

ci

A collection of GPU/TPU-accelerated parallel game simulators for reinforcement learning (RL)

Why Pgx?

Brax, a JAX-native physics engine, provides extremely high-speed parallel simulation for RL in continuous state space. Then, what about RL in discrete state spaces like Chess, Shogi, and Go? Pgx provides a wide variety of JAX-native game simulators! Highlighted features include:

  • JAX-native. All step functions are JIT-able
  • Super fast in parallel execution on accelerators
  • Various game support including Backgammon, Chess, Shogi, and Go
  • Beautiful visualization in SVG format

Install

pip install pgx

Usage

Open In Colab

import jax
import pgx

env = pgx.make("go-19x19")
init = jax.jit(jax.vmap(env.init))  # vectorize and JIT-compile
step = jax.jit(jax.vmap(env.step))

batch_size = 1024
keys = jax.random.split(jax.random.PRNGKey(42), batch_size)
state = init(keys)  # vectorized states
while not state.terminated.all():
    action = model(state.current_player, state.observation, state.legal_action_mask)
    state = step(state, action)  # state.reward (2,)

Supported games and road map

:warning: Pgx is currently in the beta version. Therefore, API is subject to change without notice. We aim to release v1.0.0 in April 2023. Opinions and comments are more than welcome!

Use pgx.available_games() to see the list of currently available games.

Game Environment Visualization
2048 :white_check_mark: :white_check_mark:
Animal Shogi :white_check_mark: :white_check_mark:
Backgammon :white_check_mark: :white_check_mark:
Bridge Bidding :construction: :white_check_mark:
Chess :white_check_mark: :white_check_mark:
Connect Four :white_check_mark: :white_check_mark:
Go :white_check_mark: :white_check_mark:
Hex :white_check_mark: :white_check_mark:
Kuhn Poker :white_check_mark: :white_check_mark:
Leduc hold'em :white_check_mark: :white_check_mark:
Mahjong :construction: :construction:
MinAtar/Asterix :white_check_mark: :white_check_mark:
MinAtar/Breakout :white_check_mark: :white_check_mark:
MinAtar/Freeway :white_check_mark: :white_check_mark:
MinAtar/Seaquest :white_check_mark: :white_check_mark:
MinAtar/SpaceInvaders :white_check_mark: :white_check_mark:
Othello :white_check_mark: :white_check_mark:
Shogi :white_check_mark: :white_check_mark:
Sparrow Mahjong :white_check_mark: :white_check_mark:
Tic-tac-toe :white_check_mark: :white_check_mark:

See also

Pgx is intended to complement these JAX-native environments with (classic) board game suits:

Combining Pgx with these JAX-native algorithms/implementations might be an interesting direction:

Citation

@article{koyamada2023pgx,
  title={Pgx: Hardware-accelerated parallel game simulation for reinforcement learning},
  author={Koyamada, Sotetsu and Okano, Shinri and Nishimori, Soichiro and Murata, Yu and Habara, Keigo and Kita, Haruka and Ishii, Shin},
  journal={arXiv preprint arXiv:2303.17503},
  year={2023}
}

LICENSE

Apache-2.0

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pgx-0.5.0.tar.gz (237.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pgx-0.5.0-py3-none-any.whl (319.9 kB view details)

Uploaded Python 3

File details

Details for the file pgx-0.5.0.tar.gz.

File metadata

  • Download URL: pgx-0.5.0.tar.gz
  • Upload date:
  • Size: 237.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for pgx-0.5.0.tar.gz
Algorithm Hash digest
SHA256 34b305816669b60cd08cca119499e89152d195bf460c493e06630e6dd44af020
MD5 af8072be689e37a395d1a563bc20819c
BLAKE2b-256 902dbdefb93894d9b6099234a518ec5ccc9f84dc313db44b9acb18aff3640d8f

See more details on using hashes here.

File details

Details for the file pgx-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: pgx-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 319.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for pgx-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bb0e70903163e5415f7eeed64896108f2479293d74643063d4947a28c2da3674
MD5 d3bfa7f7fb6ed8ade4055623680aa665
BLAKE2b-256 39997e2096d69ed80b7f9b094f1075920dc35fde565d954aa4e4f444aa0ebae6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page