Skip to main content

Keras implementation of Phased LSTM

Project description

Keras implementation of Phased LSTM [https://arxiv.org/abs/1610.09513], from NIPS 2016.

Works both with Theano and Tensorflow backend (although Theano recommended, as 3x faster).

Classification performance compared to standard Keras LSTM for MNIST dataset:

Accuracy [red: PLSTM, black: LSTM] Loss [red: PLSTM, black: LSTM]

Phased LSTM::

Epoch 1/20 60000/60000 [==============================] - 324s - loss: 2.0418 - acc: 0.2513

Epoch 2/20 60000/60000 [==============================] - 319s - loss: 1.7242 - acc: 0.3654

Epoch 3/20 60000/60000 [==============================] - 314s - loss: 1.7099 - acc: 0.3501

Epoch 4/20 60000/60000 [==============================] - 314s - loss: 1.5299 - acc: 0.4254

Epoch 5/20 60000/60000 [==============================] - 313s - loss: 1.2343 - acc: 0.5388

Epoch 6/20 60000/60000 [==============================] - 314s - loss: 1.1064 - acc: 0.5926

Epoch 7/20 60000/60000 [==============================] - 314s - loss: 1.0078 - acc: 0.6425

Epoch 8/20 60000/60000 [==============================] - 314s - loss: 0.9120 - acc: 0.6825

Epoch 9/20 60000/60000 [==============================] - 314s - loss: 0.8294 - acc: 0.7134

Epoch 10/20 60000/60000 [==============================] - 311s - loss: 0.7552 - acc: 0.7434

Epoch 11/20 60000/60000 [==============================] - 311s - loss: 0.6813 - acc: 0.7685

Epoch 12/20 60000/60000 [==============================] - 311s - loss: 0.6143 - acc: 0.7901

Epoch 13/20 60000/60000 [==============================] - 311s - loss: 0.5686 - acc: 0.8028

Epoch 14/20 60000/60000 [==============================] - 311s - loss: 0.5320 - acc: 0.8156

Epoch 15/20 60000/60000 [==============================] - 311s - loss: 0.5097 - acc: 0.8223

Epoch 16/20 60000/60000 [==============================] - 311s - loss: 0.4750 - acc: 0.8353

Epoch 17/20 60000/60000 [==============================] - 311s - loss: 0.4507 - acc: 0.8467

Epoch 18/20 60000/60000 [==============================] - 312s - loss: 0.4354 - acc: 0.8538

Epoch 19/20 60000/60000 [==============================] - 316s - loss: 0.4106 - acc: 0.8618

Epoch 20/20 60000/60000 [==============================] - 316s - loss: 0.3934 - acc: 0.8695

LSTM::

Epoch 1/20 60000/60000 [==============================] - 157s - loss: 2.2945 - acc: 0.1216

Epoch 2/20 60000/60000 [==============================] - 157s - loss: 2.0987 - acc: 0.2275

Epoch 3/20 60000/60000 [==============================] - 157s - loss: 1.9601 - acc: 0.2926

Epoch 4/20 60000/60000 [==============================] - 157s - loss: 1.8418 - acc: 0.3247

Epoch 5/20 60000/60000 [==============================] - 157s - loss: 2.0860 - acc: 0.2619

Epoch 6/20 60000/60000 [==============================] - 157s - loss: 2.1297 - acc: 0.2225

Epoch 7/20 60000/60000 [==============================] - 157s - loss: 1.8556 - acc: 0.3287

Epoch 8/20 60000/60000 [==============================] - 157s - loss: 1.8428 - acc: 0.3344

Epoch 9/20 60000/60000 [==============================] - 158s - loss: 1.8119 - acc: 0.3219

Epoch 10/20 60000/60000 [==============================] - 158s - loss: 1.8159 - acc: 0.3246

Epoch 11/20 60000/60000 [==============================] - 158s - loss: 1.9290 - acc: 0.2554

Epoch 12/20 60000/60000 [==============================] - 158s - loss: 1.7843 - acc: 0.3047

Epoch 13/20 60000/60000 [==============================] - 158s - loss: 1.7623 - acc: 0.3371

Epoch 14/20 60000/60000 [==============================] - 158s - loss: 1.6016 - acc: 0.4079

Epoch 15/20 60000/60000 [==============================] - 158s - loss: 1.5954 - acc: 0.3985

Epoch 16/20 60000/60000 [==============================] - 157s - loss: 1.6393 - acc: 0.3823

Epoch 17/20 60000/60000 [==============================] - 157s - loss: 1.6186 - acc: 0.3939

Epoch 18/20 60000/60000 [==============================] - 157s - loss: 1.6276 - acc: 0.3835

Epoch 19/20 60000/60000 [==============================] - 157s - loss: 1.6557 - acc: 0.3684

Epoch 20/20 60000/60000 [==============================] - 157s - loss: 1.8699 - acc: 0.3258

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for phased-lstm-keras, version 1.0.1
Filename, size File type Python version Upload date Hashes
Filename, size phased_lstm_keras-1.0.1-py2.py3-none-any.whl (8.8 kB) File type Wheel Python version py2.py3 Upload date Hashes View hashes
Filename, size phased_lstm_keras-1.0.1.tar.gz (20.3 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page