Skip to main content

A python library for calculating the delta score (Holland et al. 2002) and Q-Residual (Gray et al. 2010)

Project description

phylogemetric

A python library for calculating delta score (Holland et al. 2002) and Q-Residual (Gray et al. 2010) for phylogenetic data.

Build Status Coverage Status DOI License JOSS

Installation:

Installation is only a pip install away:

pip install phylogemetric

Usage: Command line

Basic usage:

> phylogemetric

usage: phylogemetric [-h] method filename

Calculate delta score for filename example.nex:

> phylogemetric delta example.nex

taxon1              0.2453
taxon2              0.2404
taxon3              0.2954
...

Calculate qresidual score for filename example.nex:

> phylogemetric qresidual example.nex

taxon1              0.0030
taxon2              0.0037
taxon3              0.0063
...

Note: to save the results to a file use shell piping e.g.:

> phylogemetric qresidual example.nex > qresidual.txt

Speeding things up by using multiple processes.

You can tell phylogemetric to use multiple cores with the -w/--workers argument:

> phylogemetric -w 4 qresidual example.nex

Usage: Library

Calculate scores:

from nexus import NexusReader
from phylogemetric import DeltaScoreMetric
from phylogemetric import QResidualMetric

# load data from a nexus file:
nex = NexusReader("filename.nex")
qres = QResidualMetric(nex.data.matrix)

# Or construct a data matrix directly: 

matrix = {
    'A': [
        '1', '1', '1', '1', '0', '0', '1', '1', '1', '0', '1', '1',
        '1', '1', '0', '0', '1', '1', '1', '0'
    ],
    'B': [
        '1', '1', '1', '1', '0', '0', '0', '1', '1', '1', '1', '1',
        '1', '1', '1', '0', '0', '1', '1', '1'
    ],
    'C': [
        '1', '1', '1', '1', '1', '1', '1', '0', '1', '1', '1', '0',
        '0', '0', '0', '1', '0', '1', '1', '1'
    ],
    'D': [
        '1', '0', '0', '0', '0', '1', '0', '1', '1', '1', '1', '0',
        '0', '0', '0', '1', '0', '1', '1', '1'
    ],
    'E': [
        '1', '0', '0', '0', '0', '1', '0', '1', '0', '1', '1', '0',
        '0', '0', '0', '1', '1', '1', '1', '1'
    ],
}

delta = DeltaScoreMetric(matrix)

Class Methods:

m = DeltaScoreMetric(matrix)

# calculates the number of quartets in the data:

m.nquartets()

# returns the distance between two sequences:
m.dist(['1', '1', '0'], ['0', '1', '0'])

# gets a dictionary of metric scores:
m.score()
m.score(workers=4) # with multiple processes.


# pretty prints the metric scores:
m.pprint()

Requirements:

  • python-nexus >= 1.1

Performance Notes:

Currently phylogemetric is implemented in python, and the Delta/Q-Residual algorithms are O(n). This means that performance is not optimal, and it may take a while to calculate these metrics for datasets with more than 100 taxa or so. To help speed this up, use the multiple processes argument -w/--workers at the command line or by passing workers=n to the score function.

I hope to improve performance in the near future, but in the meantime, if this is an issue for you then try using the implementations available in SplitsTree.

Citation:

If you use phylogemetric, please cite:

Greenhill, SJ. 2016. Phylogemetric: A Python library for calculating phylogenetic network metrics. Journal of Open Source Software.
http://dx.doi.org/10.21105/joss.00028

Changelog:

  • 1.1.0:
  • Added support for multiple processes.
  • Removed python 2 support.

Acknowledgements:

  • Thanks to David Bryant for clarifying the Q-Residual code.
  • Thanks to Kristian Rother for code quality suggestions.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for phylogemetric, version 1.1.0
Filename, size File type Python version Upload date Hashes
Filename, size phylogemetric-1.1.0.tar.gz (15.0 kB) File type Source Python version None Upload date Hashes View
Filename, size phylogemetric-1.1.0-py3.9.egg (30.0 kB) File type Egg Python version 1.1.0 Upload date Hashes View
Filename, size phylogemetric-1.1.0-py2.py3-none-any.whl (16.6 kB) File type Wheel Python version py2.py3 Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page