Skip to main content

picoLLM Inference Engine

Project description

picoLLM Inference Engine Python Binding

Made in Vancouver, Canada by Picovoice

picoLLM Inference Engine

picoLLM Inference Engine is a highly accurate and cross-platform SDK optimized for running compressed large language models. picoLLM Inference Engine is:

  • Accurate; picoLLM Compression improves GPTQ by significant margins
  • Private; LLM inference runs 100% locally.
  • Cross-Platform
  • Runs on CPU and GPU
  • Free for open-weight models

Compatibility

  • Python 3.9+
  • Runs on Linux (x86_64), macOS (arm64, x86_64), Windows (x86_64, arm64), and Raspberry Pi (5 and 4).

Installation

pip3 install picollm

Models

picoLLM Inference Engine supports the following open-weight models. The models are on Picovoice Console.

  • Gemma
    • gemma-2b
    • gemma-2b-it
    • gemma-7b
    • gemma-7b-it
  • Llama-2
    • llama-2-7b
    • llama-2-7b-chat
    • llama-2-13b
    • llama-2-13b-chat
    • llama-2-70b
    • llama-2-70b-chat
  • Llama-3
    • llama-3-8b
    • llama-3-8b-instruct
    • llama-3-70b
    • llama-3-70b-instruct
  • Llama-3.2
    • llama3.2-1b-instruct
    • llama3.2-3b-instruct
  • Mistral
    • mistral-7b-v0.1
    • mistral-7b-instruct-v0.1
    • mistral-7b-instruct-v0.2
  • Mixtral
    • mixtral-8x7b-v0.1
    • mixtral-8x7b-instruct-v0.1
  • Phi-2
    • phi2
  • Phi-3
    • phi3
  • Phi-3.5
    • phi3.5

AccessKey

AccessKey is your authentication and authorization token for deploying Picovoice SDKs, including picoLLM. Anyone who is using Picovoice needs to have a valid AccessKey. You must keep your AccessKey secret. You would need internet connectivity to validate your AccessKey with Picovoice license servers even though the LLM inference is running 100% offline and completely free for open-weight models. Everyone who signs up for Picovoice Console receives a unique AccessKey.

Usage

Create an instance of the engine and generate a prompt completion:

import picollm

pllm = picollm.create(
    access_key='${ACCESS_KEY}',
    model_path='${MODEL_PATH}')

res = pllm.generate(prompt='${PROMPT}')
print(res.completion)

Replace ${ACCESS_KEY} with yours obtained from Picovoice Console, ${MODEL_PATH} with the path to a model file downloaded from Picovoice Console, and ${PROMPT} with a prompt string.

Instruction-tuned models (e.g., llama-3-8b-instruct, llama-2-7b-chat, and gemma-2b-it) have a specific chat template. You can either directly format the prompt or use a dialog helper:

dialog = pllm.get_dialog()
dialog.add_human_request(prompt)

res = pllm.generate(prompt=dialog.prompt())
dialog.add_llm_response(res.completion)
print(res.completion)

To interrupt completion generation before it has finished:

pllm.interrupt()

Finally, when done, be sure to release the resources explicitly:

pllm.release()

Demos

picollmdemo provides command-line utilities for LLM completion and chat using picoLLM.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

picollm-2.0.0.tar.gz (10.0 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

picollm-2.0.0-py3-none-any.whl (10.1 MB view details)

Uploaded Python 3

File details

Details for the file picollm-2.0.0.tar.gz.

File metadata

  • Download URL: picollm-2.0.0.tar.gz
  • Upload date:
  • Size: 10.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for picollm-2.0.0.tar.gz
Algorithm Hash digest
SHA256 2f27d60c436d2be5c6bc106155f1b057e566302b398808bdbbaa00c4c18a6a63
MD5 e9aef1a14e123606776560f5eed84594
BLAKE2b-256 e2c6660a1569eca989ed3037115c04536c645ae094d99e542c539680029ce6eb

See more details on using hashes here.

File details

Details for the file picollm-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: picollm-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for picollm-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 90bd6b9afb53dee98c788aad467f2f26161f8008706739be12cbbd36612c1048
MD5 5813fa8c394c1ed0c9d6082e1bd4009a
BLAKE2b-256 1a5be82b3af10084685d1a5b35e8a40a1b64c4dd2529f925acbdeedae23c3f7a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page