Python package for post-processing PIV results
Project description
PIVPy
Python based post-processing PIV data analysis
Merging the three packages:
- https://github.com/tomerast/Vecpy
- https://github.com/alexlib/pivpy/tree/xarray
- https://github.com/ronshnapp/vecpy
How do I get set up?
Recommended: use uv (fast, reproducible)
Create a virtualenv and install:
uv venv
uv pip install pivpy
Install with optional dependencies (including lvpyio for LaVision VC7):
uv pip install 'pivpy[full]'
Alternative: use pip:
pip install pivpy
or with optional dependencies:
pip install 'pivpy[full]'
if you use OpenPIV, PIVlab, etc.
Quick start (auto-detect file format):
from pivpy import io
ds = io.read_piv('your_file.vec')
Legacy loaders (still supported):
ds = io.load_vec('your_file.vec')
ds = io.load_openpiv_txt('your_file.txt')
Check whether a newer version is available on PyPI:
import pivpy
res = pivpy.check_update(verbose=True)
# res.status: 0=unavailable, 1=up-to-date, 2=update available, 3=installed newer
PIVMat-inspired methods
PIVPy exposes many post-processing operations via the xarray accessor Dataset.piv.
Several common PIVMat toolbox methods are available with similar names/behavior:
import pivpy.pivpy # registers the .piv accessor
from pivpy import io
ds = io.create_sample_Dataset(n_frames=10)
# Add noise (similar to PIVMat addnoisef)
ds_noisy = ds.copy().piv.addnoisef(eps=0.1, opt='add', nc=0.0, seed=0)
# Ensemble (temporal) average and optional std/rms (similar to PIVMat averf)
avg = ds.piv.averf()
avg, std, rms = ds.piv.averf(return_std_rms=True)
# Spatial averages (similar to PIVMat spaverf)
ds_xy = ds.piv.spaverf('xy') # excludes zeros by default
ds_x0 = ds.piv.spaverf('x0') # include zeros
# Subtract ensemble/spatial average (similar to PIVMat subaverf)
fluct = ds.piv.subaverf('e')
fluct_x = ds.piv.subaverf('x0')
# Azimuthal averaging (similar to PIVMat azaverf)
r, ur, ut = ds.isel(t=0).piv.azaverf(0.0, 0.0, return_profiles=True)
# Temporal resampling and phase average (similar to PIVMat resamplef/phaseaverf)
ds_r = ds.piv.resamplef(tini=range(ds.sizes['t']), tfin=[0.5, 1.5, 2.5])
phased = ds.piv.phaseaverf(12)
Additional PIVMat-inspired utilities:
# Correlation along a dimension (similar to PIVMat corrm/corrx)
cu = ds.piv.corrm(variable='u', dim='x') # returns DataArray with a 'lag' dimension
cv = ds.piv.corrm(variable='v', dim='y', half=True)
# Spatial correlation function + integral scales (similar to PIVMat corrf)
cor = ds.piv.corrf(variable='u', dim='x', normalize=True)
# correlation curve: cor['f'] over cor['r']
# integral scales: cor['isinf'], cor['is5'], cor['is2'], cor['is1'], cor['is0']
# Fill holes encoded as zeros (similar to PIVMat interpolat.m behavior)
ds_filled = ds.piv.fill_zeros(max_iter=10)
# Extract a rectangular region (similar to PIVMat extractf)
sub = ds.piv.extractf([0.0, 0.0, 10.0, 5.0], 'phys') # [x1,y1,x2,y2] in physical units
sub = ds.piv.extractf([10, 5, 50, 40], 'mesh') # 1-based mesh indices (MATLAB-like)
# Spatial convolution filter (similar to PIVMat filterf)
ds_smooth = ds.piv.filterf(1.0, 'gauss', 'same') # keep same size
ds_smooth_valid = ds.piv.filterf(1.0, 'gauss') # smaller (conv2(...,'valid') behavior)
# Flip field (similar to PIVMat flipf)
ds_lr = ds.piv.flipf('x') # left-right mirror (negates u)
ds_tb = ds.piv.flipf('y') # top-bottom mirror (negates v)
ds_xy = ds.piv.flipf('xy') # both
# 2D Butterworth filter (similar to PIVMat bwfilterf)
ds_low = ds.piv.bwfilterf(filtsize=3.0, order=8.0, mode='low', trunc=True)
ds_high = ds.piv.bwfilterf(filtsize=3.0, order=8.0, mode='high')
# PIVMat-style option wrapper: opts can include 'high'/'low'/'trunc'
ds_high2 = ds.piv.bwfilterf_pm(3.0, 8.0, 'high', 'trunc')
# Batch processing over filename series (similar to PIVMat batchf)
# fun can be a callable (fun(ds, ...)) or an accessor method name (e.g. 'averf', 'bwfilterf')
from pivpy.io import batchf
results = batchf('pivpy/data/day2/day2a00500[0:5].T000.D000.P003.H001.L.vec', 'averf')
For developers, local use:
Using uv (recommended):
git clone https://github.com/alexlib/pivpy .
cd pivpy
uv venv
uv pip install -e .
Editable install with optional dependencies:
uv pip install -e '.[full]'
Alternative (conda):
git clone https://github.com/alexlib/pivpy .
cd pivpy
conda create -n pivpy python=3.11
conda activate pivpy
conda install pip
pip install -e .
What packages are required and which are optional
lvpyioby Lavision Inc. if you use vc7 filesnetcdf4if you want to store NetCDF4 files by xarraypyarrowif you want to store parquet filesvortexfittingif you want to do vortex analysis ($\lambda_2$ and $Q$ criterions, vortex fitting)numpy,scipy,matplotlib,xarrayare must and installed with thepivpy
Contributors
- @alexlib
- @ronshnapp - original steps
- @liorshig - LVreader and great visualizaiton for Lavision
- @nepomnyi - connection to VortexFitting and new algorithms
How to get started?
Look into the getting started Jupyter notebook
and additional notebooks: Notebooks
How to test?
From a command line just use:
pytest
With uv:
uv run pytest -q
Documentation on Github
How to help?
Read the ToDo file and pick one item to program. Use Fork-Develop-Pull Request model to contribute
How to write tutorials and add those to the documentation
Using great tutorial http://sphinx-ipynb.readthedocs.org/en/latest/howto.html we now can prepare IPython notebooks (see in /docs/source) and convert those to .rst files, then
uv pip install -r docs/requirements.txt
uv run sphinx-build -b html docs/source/ docs/build/html
generates docs/build/html directory with the documentation
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file pivpy-0.1.1.tar.gz.
File metadata
- Download URL: pivpy-0.1.1.tar.gz
- Upload date:
- Size: 6.8 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.9.25
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
9189f6b54c9357d31a18e0adfb181921e833f6285632262fc537d99204e9475a
|
|
| MD5 |
bccd00810b9c67772c39f82bd8c39e51
|
|
| BLAKE2b-256 |
311a0b3b2e0735188fd1cb2d6b2310cfe91703f7cb8153e23dc5212fcdebb216
|
File details
Details for the file pivpy-0.1.1-py3-none-any.whl.
File metadata
- Download URL: pivpy-0.1.1-py3-none-any.whl
- Upload date:
- Size: 6.8 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.9.25
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a8f76775b1afc750d50c5d4e59e4c50122ca48b61662263fbb5befa88b0c5d0d
|
|
| MD5 |
f1ad29f149d67079f6924a9d14561303
|
|
| BLAKE2b-256 |
7e3ff55d4dd13743e6ce0446a36782de2a4be8c1e7e9f46214d4d9e03c66b33a
|