Skip to main content

one more transformers lib

Project description

Simple way to use transformer models

PyPI version Build Status

Features

  • Multimodal Transformer (text, text -> text; for example for Automatic Post-Editing task);
  • Label smoothing loss;
  • Unlikelihood loss (sentence-level and for full context), arxiv;
  • LayerDrop technique for transformer encoder/decoder layers, arxiv;
  • Pre/Post LayerNorm encoders (Decoders in process), arxiv;
  • ADMIN Initialization (in future), arxiv;
  • Top-k/Top-p sampling with temperature, arxiv;

Installation

pip install plain-transformers

Usage

Multimodal transformer example with two tokenizers:

Step one: import model and some usefull staff;

import torch

from plain_transformers.models import MultimodalTransformer
from plain_transformers.layers import MultimodalTransformerDecoder
from plain_transformers.layers import TransformerEncoder

from plain_transformers import BPEWrapper
from plain_transformers.initializations import normal_initialization, initialize_weights
from plain_transformers.samplers.nucleus_sampler import NucleusSampler

import youtokentome as yttm

Step two: train and load tokenizers;

# train your encoder tokenizer
yttm.BPE.train(..., model='encoder_tokenizer.model')
# train your decoder tokenizer
yttm.BPE.train(..., model='decoder_tokenizer.model')

# load tokenizers
encoder_tokenizer = BPEWrapper(model='encoder_tokenizer.model')
decoder_tokenizer = BPEWrapper(model='decoder_tokenizer.model')

Step three: init out model configuration;

cfg = {
    'd_model': 768,
    'first_encoder': {
        'first_encoder_vocab_size': encoder_tokenizer.vocab_size(),
        'first_encoder_max_length': 512,
        'first_encoder_pad_token_id': encoder_tokenizer.pad_id,
        'first_encoder_token_type_vocab_size': 2,
        'first_encoder_n_heads': 8,
        'first_encoder_dim_feedforward': 2048,
        'first_encoder_num_layers': 3,
        'first_encoder_type': 'post_ln'
    },
    'second_encoder': {
        'second_encoder_vocab_size': encoder_tokenizer.vocab_size(),
        'second_encoder_max_length': 512,
        'second_encoder_pad_token_id': encoder_tokenizer.pad_id,
        'second_encoder_token_type_vocab_size': 2,
        'second_encoder_n_heads': 8,
        'second_encoder_dim_feedforward': 2048,
        'second_encoder_num_layers': 3,
        'second_encoder_type': 'post_ln'
    },
    'decoder': {
        'decoder_max_length': 512,
        'decoder_vocab_size': decoder_tokenizer.vocab_size(),
        'decoder_pad_token_id': decoder_tokenizer.pad_id,
        'decoder_token_type_vocab_size': 2,
        'decoder_n_heads': 8,
        'decoder_dim_feedforward': 2048,
        'decoder_num_layers': 3,
        'decoder_type': 'post_ln'
    },
}

Step four: initialize model and apply weight initialisation (with default parameter std=0.02);

model = MultimodalTransformer(
    TransformerEncoder,
    TransformerEncoder,
    MultimodalTransformerDecoder,
    cfg['d_model'],
    **cfg['first_encoder'],
    **cfg['second_encoder'],
    **cfg['decoder'],
    share_decoder_head_weights=True,
    share_encoder_decoder_embeddings=False,
    share_encoder_embeddings=True,
)

initialize_weights(model, normal_initialization, init_range=0.02)

Step five: train our model like ordinary seq2seq;

train(model, ...)

Step six: initialize Sampler and generate model answer;

sampler = NucleusSampler(model, encoder_tokenizer=(encoder_tokenizer, encoder_tokenizer), decoder_tokenizer=decoder_tokenizer)
sampler.generate('Hello Bob, what are you doing?', second_input_text='Fine, thanks!', top_k=5)

Example

You can find working example of NMT here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plain-transformers-0.0.1.6.tar.gz (19.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

plain_transformers-0.0.1.6-py3-none-any.whl (36.5 kB view details)

Uploaded Python 3

File details

Details for the file plain-transformers-0.0.1.6.tar.gz.

File metadata

  • Download URL: plain-transformers-0.0.1.6.tar.gz
  • Upload date:
  • Size: 19.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.15

File hashes

Hashes for plain-transformers-0.0.1.6.tar.gz
Algorithm Hash digest
SHA256 33af6fed4c7dee80e5df43bf9cf28991fde2d3facb7bfdf46259d7ed4765e8e9
MD5 0dfc45f4771f54273f6ebbce84cc7df8
BLAKE2b-256 a8d5e97c9d4dd56dcd145435d99dffffb4ba8c3cbb44a0486904a8e04ec307fa

See more details on using hashes here.

File details

Details for the file plain_transformers-0.0.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for plain_transformers-0.0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 f9e8bb31587382e5d10909120bbab2ab7f4648766c32a52813d4cf3aabb0be8a
MD5 8df93fced6e86cb7f424720d11712d2b
BLAKE2b-256 06d3c4c5c363fc8602d0cbec646f615358256e404a80ef187ca9d2258a9bc854

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page