Data Generation for Neural Network Playground of Deep Insider
Project description
playground-data
Data Generation for Neural Network Playground of Deep Insider.
This project/package that exists as an aid to the Nerural Network Playground - Deep Insider which was forked from tensorflow/playground: Deep playground.
Official pages
- The python package "playground-data" on PyPI for this project is available here.
- The source for this package is available here.
Requirements
- Python 2: 2.7+ | Python 3: 3.4, 3.5, 3.6+
- numpy
- matplotlib
Install this package using pip
pip install playground-data
Usage
from __future__ import print_function
print('Import plygdata package as pg')
import plygdata as pg
# Or, you can 'import' class directly like this:
# from plygdata.datahelper import DataHelper, DatasetType
# from plygdata.dataset import DataGenerator
print('Code for plotting sample graph')
#dir(pg.DataHelper) # How to find class members
#dir(pg.DataGenerator)
dir(pg.DatasetType)
#['ClassifyCircleData',
# 'ClassifySpiralData',
# 'ClassifyTwoGaussData',
# 'ClassifyXORData',
# 'RegressGaussian',
# 'RegressPlane',
# ...]
pg.DataHelper.plot_sample(pg.DatasetType.ClassifyCircleData)
print('Basic code for generating and graphing data')
data_noise=0.0
test_data_ratio = 0.5
# Generate data
data_array = pg.DataGenerator.classify_two_gauss(noise=data_noise)
#data_array = pg.DataGenerator.classify_circle(noise=data_noise)
#data_array = pg.DataGenerator.classify_spiral(noise=data_noise)
#data_array = pg.DataGenerator.classify_xor(noise=data_noise)
#data_array = pg.DataGenerator.regress_gaussian(noise=data_noise)
#data_array = pg.DataGenerator.regress_plane(noise=data_noise)
# Divide the data for training and testing at a specified ratio (further, separate each data into Coordinate point data part and teacher label part)
X_train, y_train, X_test, y_test = pg.DataHelper.split_train_test_x_data_label(data_array, test_size=test_data_ratio)
# Plot the data on the standard graph for Playground
fig, ax = pg.DataHelper.plot_with_playground_style(X_train, y_train, X_test, y_test)
print('Signature of main @staticmethod')
import sys
if sys.version_info[0] < 3.3: # inspect.signature was introduced at version Python 3.3
!pip install funcsigs
try:
from inspect import signature
except ImportError:
from funcsigs import signature
print('pg.DataHelper.plot_sample', str(signature(pg.DataHelper.plot_sample)))
# pg.DataHelper.plot_sample (data_type, visualize_test_data=False, noise=0.0, test_size=0.5, figsize=(5, 5), dpi=100)
print('pg.DataGenerator.classify_two_gauss', str(signature(pg.DataGenerator.classify_two_gauss)))
# pg.DataGenerator.classify_two_gauss (noise=0.0, numSamples=500)
print('pg.DataHelper.split_train_test_x_data_label', str(signature(pg.DataHelper.split_train_test_x_data_label)))
# pg.DataHelper.split_train_test_x_data_label (data, test_size=0.5, label_num=1)
print('pg.DataHelper.plot_with_playground_style', str(signature(pg.DataHelper.plot_with_playground_style)))
# pg.DataHelper.plot_with_playground_style (X_train, y_train, X_test=None, y_test=None, figsize=(5, 5), dpi=100)
print('Imported "playground-data" package version is ...')
print(pg.__version__)
License
Copyright 2018 Digital Advantage Inc. All Rights Reserved. Licensed under the Apache License, Version 2.0.
The licenses of using open-source code
This project uses the JavaScript-to-Python-translation of the following open-source code:
Deep playground/src/dataset.ts
Copyright 2016 Google Inc. All Rights Reserved.
Licensed under the Apache License, Version 2.0.
d3/d3-scale/linear.js
Copyright 2010-2015 Mike Bostock. All rights reserved.
Licensed under the BSD 3-Clause "New" or "Revised" License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file playground-data-0.6.2.tar.gz.
File metadata
- Download URL: playground-data-0.6.2.tar.gz
- Upload date:
- Size: 14.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.7.0
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
c8d5058f893042ca606653d0a821d657091820c66a7ec99828365453679ebe46
|
|
| MD5 |
1721fbf327836bde1ee8ecbd7605cdca
|
|
| BLAKE2b-256 |
b55161bddcae4f52799eaacc695a54a3eeb4e5007e6a128af6eb241224feeb91
|