Skip to main content

Plucking (deep) keys/paths safely from python collections has never been easier.

Project description

https://img.shields.io/pypi/v/plucky.svg https://img.shields.io/pypi/l/plucky.svg https://img.shields.io/pypi/wheel/plucky.svg https://img.shields.io/pypi/pyversions/plucky.svg https://api.travis-ci.org/randomir/plucky.svg?branch=master

plucky.pluckable happily wraps any Python object and allows for chained soft plucking with attribute- and item- getters (e.g. .attr, ["key"], [idx], [::2], or a combination: ["key1", "key2"], and [0, 3:7, ::-1]; even: ["length", 0:5, 7]).

plucky.pluck will allow you to pluck same as with pluckable (regarding the plucking operations), but accepting a string selector instead of a Python expression.

plucky.plucks enables you to safely extract several-levels deep values by using a concise string selector comprised of dictionary-like keys and list-like indices/slices. Stands for pluck simplified, since it supports only a subset of pluck syntax. It’s simpler and a more efficient.

plucky.merge facilitates recursive merging of two data structures, reducing leaf values with the provided binary operator.

Installation

plucky is available as a zero-dependency Python package. Install with:

$ pip install plucky

Usage

from plucky import pluck, plucks, pluckable, merge

pluckable(obj).users[2:5, 10:15].name["first", "middle"].value

pluck(obj, 'users[2:5, 10:15].name["first", "middle"]')

plucks(obj, 'users.2:5.name.first')

merge({"x": 1, "y": 0}, {"x": 2})

Examples

obj = {
    'users': [{
        'uid': 1234,
        'name': {
            'first': 'John',
            'last': 'Smith',
        }
    }, {
        'uid': 2345,
        'name': {
            'last': 'Bono'
        }
    }, {
        'uid': 3456
    }]
}

plucks(obj, 'users.1.name')
# -> {'last': 'Bono'}

plucks(obj, 'users.name.last')
# -> ['Smith', 'Bono']

plucks(obj, 'users.*.name.first')
# -> ['John']

pluckable(obj).users.name.first.value
# -> ['John']

pluckable(obj).users.uid[0, 2, 1].value
# -> [1234, 3456, 2345]

pluckable([datetime.datetime.now(), None, {'month': 8}])[::2].month
# -> [5, 8]

pluckable(obj, skipmissing=False, default='Unnamed').users.name.first.value
# -> ['John', 'Unnamed', 'Unnamed']

More Examples! :)

pluckable(obj).users[:, ::-1].name.last.value
# -> ['Smith', 'Bono', 'Bono', 'Smith']

pluckable(obj).users[:, ::-1].name.last[0, -1].value
# -> ['Smith', 'Smith']

pluck(obj, 'users[:, ::-1].name.last[0, -1]')
# -> ['Smith', 'Smith']

plucks([1, {'val': 2}, 3], 'val')
# -> [2]

plucks([1, {'val': [1,2,3]}, 3], '1.val.-1')
# -> 3

merge({"x": 1, "y": 0}, {"x": 2})
# -> {"x": 3, "y": 0}

merge({"a": [1, 2], "b": [1, 2]}, {"a": [3, 4], "b": [3]})
# -> {"a": [4, 6], "b": [1, 2, 3]}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for plucky, version 0.4.3
Filename, size File type Python version Upload date Hashes
Filename, size plucky-0.4.3-py2.py3-none-any.whl (10.6 kB) File type Wheel Python version 3.5 Upload date Hashes View
Filename, size plucky-0.4.3.tar.gz (8.5 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page