Skip to main content

plutus_backtest is a python library for backtesting investment decisions using Python 3.6 and above.

Reason this release was yanked:

progress_bar not working

Project description

plutus_backtest

PyPI PyPI - Python Version Downloads

Description:

This project has been performed for the purpose of local backtests of financial strategies. The package contains various indicators and tools allowing users obtaining exact results of their strategies over a certain period of time. The users are also able to pick endless amount of trading instruments and set criteria such as long or short positioning. Beside that optional stop loss and take profit signals are available not only as general limit level for entire portfolio but can be also applied for each instrument individually. Another optional tool available is weights factor distribution which is oriented to assign weights according to the provided values. In addition, the package allows to create several backtests and combine them all together into one to see the full picture of the investment strategy.


Tickers for analysis are available on Yahoo Finance page.

Installation:

  • Dependency: pandas, numpy, plotly, yfinance
  • Install from pypi:
pip install plutus_backtest
  • Verified in Python:
from plutus_backtest import backtest

Examples:

Class "backtest" contains below parameters:

asset: str or list or series
    Instruments taken into the consideration for the backtest.

o_day: list of str or timestamps or series
    Day/Days of the position opening.

c_day: list of str or timestamps or series
    Day/Days of the position closing.

weights_factor: list of int or float or array-like or series default None
    Optional list of factors which will be considered to define the weights for taken companies. By default
    all weights are distributed equally, however if the list of factors provided the backtest will maximize
    the weights towards the one with max weight factor. Negative weight factor will be considered as short selling.

take_profit: list of float or int or series default None
    List of values determining the level till a particular stock shall be traded.

stop_loss: list of float or int or series default None
    List of values determining the level till a particular stock shall be traded.

benchmark: str default None
    A benchmark ticker for comparison with portfolio performance

A short and fast way to run a single backtest would be:


from plutus_backtest import backtest

bt = backtest(asset=["AAPL", "BTC-USD", "GC=F"], 
              o_day=["2021-08-01", "2021-07-15", "2021-08-20"],
              c_day=["2021-09-01", "2021-09-01", "2021-09-15"])

bt.execution()

As a result you will see a statistical table as well as graphical representation of the portfolio which shows accumulated return.


image


In order to access dataframe with daily changes, use:


from plutus_backtest import backtest

bt = backtest(asset=["AAPL", "BTC-USD", "GC=F"],
              o_day=["2021-08-01", "2021-07-15", "2021-08-20"],
              c_day=["2021-09-01", "2021-09-01", "2021-09-15"])

bt.portfolio_construction()

bt.execution_table.head()

The result will appear as following (all values are in %):


image


If you would like to compare performance of your portfolio with any other instrument you can use a parameter "benchmark":


from plutus_backtest import backtest

bt = backtest(asset=["AAPL", "BTC-USD", "GC=F"], 
              o_day=["2021-08-01", "2021-07-15", "2021-08-20"],
              c_day=["2021-09-01", "2021-09-01", "2021-09-15"],
              benchmark = "SPY")

bt.execution()

Above example will additionaly plot a SPY index performance (accumulated return from same period as your portfolio) on your portfolio graph:


image


"plotting" function will enable users to observe additional graphs such as drawdown and monthly income plots:


from plutus_backtest import backtest

bt = backtest(asset=["AAPL", "F", "MS"], 
              o_day=["2020-08-01", "2020-07-15", "2020-08-20"],
              c_day=["2021-09-01", "2021-09-01", "2021-09-15"])

bt.plotting()

image image image


If you didn't specified weights of particular assets in your portfolio (using weights_factor parameter), % allocation will be distributed equally (in selected period of time) and shown in the last plot called Weights distribution.


image


from plutus_backtest import backtest

bt = backtest(asset=["AAPL", "F", "MS"], 
              o_day=["2020-08-01", "2020-07-15", "2020-08-20"],
              c_day=["2021-09-01", "2021-09-01", "2021-09-15"],
              weights_factor = [50, 40, 10])

bt.plotting()

In case of specifying % of portfolio allocation for each asset (AAPL = 50%, F = 40%, MS = 10% from above example) above plots will be adjusted. Example of Weights distribution plot:


image


No need to include weights that will sum up to 100% (but it is recommended). Code calculates % based on value / total of absolute values. For example:


from plutus_backtest import backtest

bt = backtest(asset=["AAPL", "F", "MS"], 
              o_day=["2020-08-01", "2020-07-15", "2020-08-20"],
              c_day=["2021-09-01", "2021-09-01", "2021-09-15"],
              weights_factor = [35, 140, -21])

bt.plotting()

weights_factor total is 196 [35 + 140 + 21].
AAPL: 35 / 196 = ~17%
F: 140 / 196 = ~71.4%
MS: |21| / 196 = ~10.7%


image


If only 2 out of 3 assets are traded in selected period, weights will be calculated as described above, but excluding 3rd asset.


weights_factor total is 175 [35 + 140].
AAPL: 35 / 175 = 20%
F: 140 / 175 = 80%


image


All plots are interactive and contain some details. For example "Accumulative return" plot reflects (from top to bottom):

  • Date;
  • Accumulation (in %) till selected date;
  • Daily changes (in %) for each instrument you called.

image


More complex approach would be assigning weights factor/stop loss/ take profit indicators:


from plutus_backtest import backtest

bt = backtest(asset = ["AAPL", "BTC-USD","GC=F"], 
              o_day = ["2021-08-01", "2021-07-15", "2021-08-20"],
              c_day = ["2021-09-01", "2021-09-01","2021-09-15"], 
              weights_factor = [10, -5, 35], 
              stop_loss = [0.8, 0.9, 0.95], 
              take_profit = [1.1, 1.2, 1.05])

bt.execution()

In this case all parameters are used. The weights will not be distributed equally. "AAPL" will have 20% of the total portofolio BTC-USD - 10% and "GC=F" will have 70%. The negative sign in the weights factor will mean short selling, therefore first "AAPL" and "GC=F" instruments are in long position and "BTC-USD" is in the short.


Stop loss and take profit shall be interpreted as "AAPL" has 20% of stop loss and 10% of take profit, "BTC-USD" has 10% of stop loss and 20% of take profit, "GC=F" 5% of stop loss and 5% of take profit. As result accumulative graph will look as:


image


In the moment when one of the securities reaching its stop loss or take profit, the trade will automatically stopped and the weights will be reassigned respectively to the left assets.


In case of users need to test one instrument but several times with different timelines, the package will interpret it as:


from plutus_backtest import backtest

bt = backtest(asset = ["AMZN", "AMZN","AMZN"], 
              o_day = ["2021-08-01", "2021-09-01", "2021-10-01"],
              c_day = ["2021-08-15", "2021-09-15","2021-10-15"])

bt.portfolio_construction()

bt.execution_table.head(15)

image


Each time when one asset is repeating the package will assign additional number to it to track required periods. It's worth to mention that due to data limitation the code will use only close price for the analysis of the securities. Only the first trading day has relationship open/close, since it's assumed that the tradingstarts with open price and finishes with close one.


Ultimately, if the users would like to perform several backtest and combine them into one to see the full picture then there are few functions related to that, namely:


from plutus_backtest import backtest

bt1 = backtest(asset = ["AAPL", "BTC-USD","GC=F"], 
               o_day = ["2021-08-01", "2021-07-15", "2021-08-20"],
               c_day = ["2021-09-01", "2021-09-01","2021-09-15"])

bt2 = backtest(asset = ["AMZN", "EURUSD=X"], 
               o_day = ["2021-06-01", "2021-06-15"],
               c_day = ["2021-06-30", "2021-07-05"])

p1 = bt1.portfolio_construction()
p2 = bt2.portfolio_construction()
q1 = bt1.final_portfolio
q2 = bt2.final_portfolio

dic ={}
dic[0] = q1
dic[1]= q2

combined_frame = backtest.puzzle_assembly(dic)

combined_frame

First of all all backtest shall be executed in order to obtain final portfolio of the each one. Then they shall be assigned to an empty dictionary. Thereafter function "puzzle_assembly" takes the data from diffirent backtest and unite it into one dataframe. Please note: only "Accumulation" column from below table is shown in %.


image


In order to visualize data functions "puzzle_execution" or "puzzle_plotting" shall be called. Which work exactly in the same way as it was explained previously.


from plutus_backtest import backtest

bt1 = backtest(asset = ["AAPL", "BTC-USD","GC=F"], 
               o_day = ["2021-08-01", "2021-07-15", "2021-08-20"],
               c_day = ["2021-09-01", "2021-09-01","2021-09-15"])

bt2 = backtest(asset = ["AMZN", "EURUSD=X"], 
               o_day = ["2021-06-01", "2021-06-15"],
               c_day = ["2021-06-30", "2021-07-05"])

p1 = bt1.portfolio_construction()
p2 = bt2.portfolio_construction()
q1 = bt1.final_portfolio
q2 = bt2.final_portfolio

dic ={}
dic[0] = q1
dic[1]= q2

combined_frame = backtest.puzzle_assembly(dic)

backtest.puzzle_execution(combined_frame)

image


Support:

Please open an issue for support.
With additional questions please reachout to autors directly:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plutus_backtest-0.1.4.tar.gz (17.8 kB view details)

Uploaded Source

Built Distribution

plutus_backtest-0.1.4-py3-none-any.whl (14.4 kB view details)

Uploaded Python 3

File details

Details for the file plutus_backtest-0.1.4.tar.gz.

File metadata

  • Download URL: plutus_backtest-0.1.4.tar.gz
  • Upload date:
  • Size: 17.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for plutus_backtest-0.1.4.tar.gz
Algorithm Hash digest
SHA256 6c85ca78b0d8cc5d809923ea42ed33249d649318744066cff435adc5582bb4e4
MD5 155accc9c842e23ed17b2961a13d3ef6
BLAKE2b-256 b104a925b6a80ca909270fec78b52f8bfb41670bc4b80749c9aa5d362745bcfc

See more details on using hashes here.

File details

Details for the file plutus_backtest-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: plutus_backtest-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 14.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for plutus_backtest-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 6d1a6d9c54bffebe43874ba442446582bc8a051e27ed62afc1fe462e5c40b6c5
MD5 edb61219ccd9df87754d53ca65efff7e
BLAKE2b-256 1da18532aed92d006fe7f128ddc660f7d6e4ed6e1324c937302f266c8822012f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page