A PyMC3-like Interface for Pyro Stochastic Functions

## Project description

PyMC3-like abstractions for pyro's stochastic function. Define a model as a stochastic function in pyro. Use pm_like wrapper to create a PyMC3-esque Model. Random variables are exposed to user as attributes of Model. pm-pyro provides abstractions for inference (NUTS : No-U-Turn Sampler), trace plots, posterior plot and posterior predictive plots.

## Install

Install from pypi

pip install pm-pyro


Developer setup

# install requirements
pip install -r requirements-dev.txt
# run tests
python -m pytest pmpyro/tests.py


## Example

Borrowed this example from a PyMC3 tutorial. Outcome variables Y is dependent on 2 features X_1 and X_2. The notebook for this example is available here

## Model Specification

We design a simple Bayesian Linear Regression model.

## Stochastic Function

The model specification is implemented as a stochastic function.

import pyro.distributions as dist
import pyro
import torch

def pyro_model(x1, x2, y):
alpha = pyro.sample('alpha', dist.Normal(0, 10))
beta = pyro.sample('beta',pdist.Normal(torch.zeros(2,), torch.ones(2,) * 10.))
sigma = pyro.sample('sigma', dist.HalfNormal(1.))

# Expected value of outcome
mu = alpha + beta[0] * x1 + beta[1] * x2

# Likelihood (sampling distribution) of observations
return pyro.sample('y_obs', dist.Normal(mu, sigma), obs=y)


## Context-manager Syntax

The pm_like wrapper creates a PyMC3-esque Model. We can use the context manager syntax for running inference. pm.sample samples from the model using the NUTS sampler. The trace is a python dictionary which contains the samples.

from pmpyro import pm_like
import pmpyro as pm

with pm_like(pyro_model, X1, X2, Y) as model:
trace = pm.sample(1000)

sample: 100%|██████████| 1300/1300 [00:16, 80.42it/s, step size=7.49e-01, acc. prob=0.911]


## Traceplot

We can visualize the samples using traceplot. Select random variables by passing them as a list via var_names = [ 'alpha' ... ] argument.

pm.traceplot(trace)


## Plot Posterior

Visualize posterior of random variables using plot_posterior.

pm.plot_posterior(trace, var_names=['beta'])


## Posterior Predictive Samples

We can sample from the posterior by running plot_posterior_predictive or sample_posterior_predictive with the same function signatures as the stochastic function def pyro_model(x1, x2, y), replacing observed variable Y with None.

ppc = pm.plot_posterior_predictive(X1, X2, None,
trace=trace, model=model, samples=60,
alpha=0.08, obs={'y_obs' : Y})


## Trace Summary

The summary of random variables is available as a pandas array.

pm.summary()


## Project details

Uploaded Source
Uploaded Python 3