A restful client library, designed to access predictnow restful API.
Project description
TO BEGIN ANY WORK WITH PREDICTNOW.AI CLIENT, WE START BY IMPORTING AND CREATING A CLASS INSTANCE
from predictnow.pdapi import PredictNowClient
import pandas as pd
api_key = "KeyProvidedToEachOfOurSubscriber"
api_host = "http://%VMIP%"
# Initial variables
username = "user1"
email = "xxxx@gmail.com"
client = PredictNowClient(api_host,api_key)
YOU WILL NEED TO EDIT THIS INPUT DATASET FILE PATH, LABELNAME AND MODELNAME!
file_path = 'my_amazing_features.xlsx'
labelname = 'futreturn' #might need to change this name accordingly
modelname = 'model1' #
import os
NOW YOUR PREDICTNOW.AI CLIENT HAS BEEN SETUP.
# For classification problem
params = {"timeseries": "yes", "weights": "no", "prob_calib": "no", "eda": "no", "type": "classification", "feature_selection": "shap", "analysis": "small", "boost": "gbdt", "mode": "train", "testsize": "1"}
# For regression problems
params = {"timeseries": "yes", "weights": "no", "prob_calib": "no", "eda": "no", "type": "regression", "feature_selection": "shap", "analysis": "small", "boost": "gbdt", "mode": "train", "testsize": "1"}
print("THE PARAMS", params)
LET'S CREATE THE MODEL BY SENDING THE PARAMETERS TO PREDICTNOW.AI
response = client.create_model
(
username=username, # only letters, numbers, or underscores
model_name=modelname,
params=params,
)
print(response)
LET'S LOAD UP THE FILE TO PANDAS IN THE LOCAL ENVIRONMENT
from pandas import read_csv # If you have the Excel file, replace read_csv with read_excel
from pandas import read_excel
df = read_excel(file_path) # Same here
df.name = "testdataframe" # Optional, but recommended
print(df)
START TRAINING MODEL
NOTE: THIS MAY TAKE UP TO several minutes
response = client.train
(
model_name=modelname,
input_df=df,
label=labelname,
username=username,
email=email,
return_output=False
)
print("THE CLIENT HAS SENT THE DATASET TO THE SERVER AND TRIGGERED THE TRAINING MODEL TASK")
print(response)
CHECK THE STATUS OF THE MODEL
status = client.getstatus(
username=username,
train_id=response["train_id"]
)
print("Current status:")
print(status)
NOW WE WILL DOWNLOAD FILES
if status["state"] == "COMPLETED":
response = client.getresult(
model_name=modelname,
username=username,
)
import pandas as pd
predicted_prob_cv = pd.read_json(response.predicted_prob_cv)
print("predicted_prob_cv")
print(predicted_prob_cv)
predicted_prob_test = pd.read_json(response.predicted_prob_test)
print("predicted_prob_test")
print(predicted_prob_test)
predicted_targets_cv = pd.read_json(response.predicted_targets_cv)
print("predicted_targets_cv")
print(predicted_targets_cv)
START PREDICTING USING THE TRAINED MODEL
if status["state"] == "COMPLETED":
df = read_excel("example_input_live_latest.xlsx")
df.name = "myfirstpredictname" # optional, but recommended
# Predict demo
response = client.predict(
model_name=modelname,
input_df=df,
username=username,
eda=params["eda"],
prob_calib=params["prob_calib"]
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pnow-0.0.1.tar.gz
(5.4 kB
view details)
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
pnow-0.0.1-py3-none-any.whl
(4.6 kB
view details)
File details
Details for the file pnow-0.0.1.tar.gz.
File metadata
- Download URL: pnow-0.0.1.tar.gz
- Upload date:
- Size: 5.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
c74a2629577629c4fa926719989b100c1bd2008f68b12e4a064802668e22dc17
|
|
| MD5 |
6d5e6b26167cab64d45969269785b173
|
|
| BLAKE2b-256 |
e19f5999124616735a1ca49a82b4411a3bdad000c5163d110438dbb696190f49
|
File details
Details for the file pnow-0.0.1-py3-none-any.whl.
File metadata
- Download URL: pnow-0.0.1-py3-none-any.whl
- Upload date:
- Size: 4.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d301f7a17bca78d7e0cefefbad39d2e65c707c3497e6a382fa0e979dac72e853
|
|
| MD5 |
3c2ecdbdceb05daa22aca41168ea3ec7
|
|
| BLAKE2b-256 |
de8db83056c925405c967e6e5caa3887f3707b99a6b5e9f5c700ea12f9dace7b
|