Skip to main content

Tools for coordinate transforms and S2-indexing via Polars Expression Plugins

Project description

The Project

This Polars plugin provides functionality which can be loosely described as tranformation of coordinates and extraction of features from them.

It contains functions which were needed in personal and work projects, therefore its set of features might appear a bit random. Nevertheless one can find it useful in projects related to robotics, geospatial science, spatial analytics etc.

The functions are divided among three namespaces: transform, s2, distance:

  • transform namespace contains functions for converting coordinates from\to map, ecef, lla, utm reference frames.

  • s2 namespace contains functions which allow to work with S2 Cells

  • distance namespace allows to calculate distances between coordinates.

This plugin presupposes that coordianates represent points in space and that they are expressed with struct datatype in Polars.

Getting Started

Installation

pip install polars-coord-transforms

Usage

import polars_coord_transforms

In order to use plugin, coordinates should be represented as struct with fields x, y, z (or, in case of LLA-points: lon, lat, alt)!

For instance, if coordinates are in separate columns, one can make a valid struct with pl.struct native Polars function:

import polars as pl

df = pl.DataFrame(
    dict(
            lon=[31.409197919000064,],
            lat=[58.860667429000046,],
            alt=[57.309668855211015,],
        )
)

df.with_columns(
    point=pl.struct("lon", "lat", "alt")
)

Examples

Suppose we have the following DataFrame with some coordinates (column "pose"), rotation quaternion (column "rotation") and offset vector (column "offset"):


import polars as pl

df = pl.DataFrame(
    [
        pl.Series("pose", [{'x': 4190.66735544079, 'y': 14338.862844330957, 'z': 10.96391354687512}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
        pl.Series("rotation", [{'x': 0.13007119, 'y': 0.26472049, 'z': 0.85758219, 'w': 0.42137553}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64, 'w': pl.Float64})),
        pl.Series("offset", [{'x': 2852423.40536658, 'y': 2201848.41975346, 'z': 5245234.74365368}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
    ]
)
print(df)


shape: (1, 3)
┌─────────────────────────────┬───────────────────────────┬───────────────────────────────────┐
│ pose                        ┆ rotation                  ┆ offset                            │
│ ---                         ┆ ---                       ┆ ---                               │
│ struct[3]                   ┆ struct[4]                 ┆ struct[3]                         │
╞═════════════════════════════╪═══════════════════════════╪═══════════════════════════════════╡
│ {4190.667,14338.863,10.964} ┆ {0.130,0.265,0.858,0.421} ┆ {2852423.405,2201848.420,5245234… │
└─────────────────────────────┴───────────────────────────┴───────────────────────────────────┘

transform

Transform coordinates from map reference frame to ECEF (Earth-Ceneterd, Earth-Fixed) coordinate system using a rotation quaternion and an offset vector.
df.with_columns(
    ecef=pl.col("pose").transform.map_to_ecef(
        pl.col("rotation"), pl.col("offset")
    )
)


shape: (1, 4)
┌────────────────────────┬────────────────────────┬────────────────────────┬───────────────────────┐
│ pose                   ┆ rotation               ┆ offset                 ┆ ecef                  │
│ ---                    ┆ ---                    ┆ ---                    ┆ ---                   │
│ struct[3]              ┆ struct[4]              ┆ struct[3]              ┆ struct[3]             │
╞════════════════════════╪════════════════════════╪════════════════════════╪═══════════════════════╡
│ {4190.667,14338.863,10 ┆ {0.130,0.265,0.858,0.4 ┆ {2852423.405,2201848.4 ┆ {2840491.941,2197932. │
│ .964}                  ┆ 21}                    ┆ 20,5245234…            ┆ 225,5253325…          │
└────────────────────────┴────────────────────────┴────────────────────────┴───────────────────────┘

Inverse transformation from ECEF to map
df.with_columns(
    pose_new=pl.col("ecef").transform.ecef_to_map("rotation", "offset")
).select(
    "pose",
    "pose_new"
)


shape: (1, 5)
┌───────────────────┬───────────────────┬───────────────────┬───────────────────┬──────────────────┐
│ pose              ┆ rotation          ┆ offset            ┆ ecef              ┆ pose_new         │
│ ---               ┆ ---               ┆ ---               ┆ ---               ┆ ---              │
│ struct[3]         ┆ struct[4]         ┆ struct[3]         ┆ struct[3]         ┆ struct[3]        │
╞═══════════════════╪═══════════════════╪═══════════════════╪═══════════════════╪══════════════════╡
│ {4190.667,14338.8 ┆ {0.130,0.265,0.85 ┆ {2852423.405,2201 ┆ {2840491.941,2197 ┆ {4190.667,14338. │
│ 63,10.964}        ┆ 8,0.421}          ┆ 848.420,5245234…  ┆ 932.225,5253325…  ┆ 863,10.964}      │
└───────────────────┴───────────────────┴───────────────────┴───────────────────┴──────────────────┘

Transform coordinates from ECEF to LLA (Longitude, Latitude, Altitude)
df.with_columns(
    lla=pl.col("ecef").transform.ecef_to_lla()
)

shape: (1, 3)
┌─────────────────────────────┬───────────────────────────────────┬─────────────────────────┐
│ pose                        ┆ ecef                              ┆ lla                     │
│ ---                         ┆ ---                               ┆ ---                     │
│ struct[3]                   ┆ struct[3]                         ┆ struct[3]               │
╞═════════════════════════════╪═══════════════════════════════════╪═════════════════════════╡
│ {4190.667,14338.863,10.964} ┆ {2840491.941,2197932.225,5253325… ┆ {37.732,55.820,163.916} │
└─────────────────────────────┴───────────────────────────────────┴─────────────────────────┘

Inverse transform from LLA to ECEF
df.with_columns(
    ecef_new=pl.col("lla").transform.lla_to_ecef()
)


shape: (1, 4)
┌────────────────────────┬────────────────────────┬────────────────────────┬───────────────────────┐
│ pose                   ┆ ecef                   ┆ lla                    ┆ ecef_new              │
│ ---                    ┆ ---                    ┆ ---                    ┆ ---                   │
│ struct[3]              ┆ struct[3]              ┆ struct[3]              ┆ struct[3]             │
╞════════════════════════╪════════════════════════╪════════════════════════╪═══════════════════════╡
│ {4190.667,14338.863,10 ┆ {2840491.941,2197932.2 ┆ {37.732,55.820,163.916 ┆ {2840491.941,2197932. │
│ .964}                  ┆ 25,5253325…            ┆ }                      ┆ 225,5253325…          │
└────────────────────────┴────────────────────────┴────────────────────────┴───────────────────────┘

Transform coordinates from LLA to UTM coordinates (UTM zone is derived from coordinates themselves)
df.with_columns(
    utm=pl.col("lla").transform.lla_to_utm()
)


shape: (1, 3)
┌─────────────────────────────┬─────────────────────────┬──────────────────────────────────┐
│ pose                        ┆ lla                     ┆ utm                              │
│ ---                         ┆ ---                     ┆ ---                              │
│ struct[3]                   ┆ struct[3]               ┆ struct[3]                        │
╞═════════════════════════════╪═════════════════════════╪══════════════════════════════════╡
│ {4190.667,14338.863,10.964} ┆ {37.732,55.820,163.916} ┆ {420564.380,6186739.936,163.916} │
└─────────────────────────────┴─────────────────────────┴──────────────────────────────────┘
Find UTM zone number from a LLA point
df.with_columns(
    utm_zone_number=pl.col("lla").transform.lla_to_utm_zone_number()
)

shape: (1, 3)
┌─────────────────────────┬──────────────────────────────────┬─────────────────┐
│ lla                     ┆ utm                              ┆ utm_zone_number │
│ ---                     ┆ ---                              ┆ ---             │
│ struct[3]               ┆ struct[3]                        ┆ u8              │
╞═════════════════════════╪══════════════════════════════════╪═════════════════╡
│ {37.732,55.820,163.916} ┆ {420564.380,6186739.936,163.916} ┆ 37              │
└─────────────────────────┴──────────────────────────────────┴─────────────────┘

Transform quaternion to Euler angles (roll, pitch, yaw)

the function returns a struct with 3 fields:"roll", "pitch", "yaw"

df.select(
    euler_angles=pl.col("rotation").transform.quat_to_euler_angles()
)

┌──────────────────────────────┐
│ euler_angles                 │
│ ---                          │
│ struct[3]                    │
╞══════════════════════════════╡
│ {0.598806,0.000000,2.228181} │
└──────────────────────────────┘

s2

Find S2 CellID of a point with longitude and latitude (with a given cell level)
df.select(
    cellid_30=pl.col("lla").s2.lonlat_to_cellid(level=30),
    cellid_28=pl.col("lla").s2.lonlat_to_cellid(level=28),
    cellid_5=pl.col("lla").s2.lonlat_to_cellid(level=5),
)


shape: (1, 3)
┌─────────────────────┬─────────────────────┬─────────────────────┐
│ cellid_30           ┆ cellid_28           ┆ cellid_5            │
│ ---                 ┆ ---                 ┆ ---                 │
│ u64                 ┆ u64                 ┆ u64                 │
╞═════════════════════╪═════════════════════╪═════════════════════╡
│ 5095036114269810839 ┆ 5095036114269810832 ┆ 5094697078462873600 │
└─────────────────────┴─────────────────────┴─────────────────────┘
Find longitude and latitude from a S2 CellID
df.select(
    lla_cell=pl.lit(5095036114269810839, dtype=pl.UInt64()).s2.cellid_to_lonlat()
)

shape: (1, 1)
┌─────────────────┐
│ lla_cell        │
│ ---             │
│ struct[2]       │
╞═════════════════╡
│ {37.732,55.820} │
└─────────────────┘

Find whether a given LLA point is in a S2 Cell identified by a specific ID
df.select(
    lla",
    cellid=pl.lit(5095036114269810832, dtype=pl.UInt64()),
    is_in_cell=pl.lit(5095036114269810832, dtype=pl.UInt64()).s2.cell_contains_point(pl.col("lla"))
)


shape: (1, 3)
┌─────────────────────────┬─────────────────────┬────────────┐
│ lla                     ┆ cellid              ┆ is_in_cell │
│ ---                     ┆ ---                 ┆ ---        │
│ struct[3]               ┆ u64                 ┆ bool       │
╞═════════════════════════╪═════════════════════╪════════════╡
│ {37.732,55.820,163.916} ┆ 5095036114269810832 ┆ true       │
└─────────────────────────┴─────────────────────┴────────────┘
Find vertices of a S2 Cell from a CellID
df.with_columns(
    cellid=pl.col("lla").s2.lonlat_to_cellid(level=5),
).with_columns(
    vertices=pl.col("cellid").s2.cellid_to_vertices()
)

shape: (1, 4)
┌─────────────────────────┬─────────────────────────┬─────────────────────┬────────────────────────┐
│ pose                    ┆ lla                     ┆ cellid              ┆ vertices               │
│ ---                     ┆ ---                     ┆ ---                 ┆ ---                    │
│ struct[3]               ┆ struct[3]               ┆ u64                 ┆ struct[8]              │
╞═════════════════════════╪═════════════════════════╪═════════════════════╪════════════════════════╡
│ {4190.667,14338.863,10. ┆ {37.732,55.820,163.916} ┆ 5094697078462873600 ┆ {37.304,55.491,40.932, │
│ 964}                    ┆                         ┆                     ┆ 57.545,36.…            │
└─────────────────────────┴─────────────────────────┴─────────────────────┴────────────────────────┘

df.select("vertices").unnest("vertices")

shape: (1, 8)
┌────────┬────────┬────────┬────────┬────────┬────────┬────────┬────────┐
│ v0_lon ┆ v0_lat ┆ v1_lon ┆ v1_lat ┆ v2_lon ┆ v2_lat ┆ v3_lon ┆ v3_lat │
│ ---    ┆ ---    ┆ ---    ┆ ---    ┆ ---    ┆ ---    ┆ ---    ┆ ---    │
│ f64    ┆ f64    ┆ f64    ┆ f64    ┆ f64    ┆ f64    ┆ f64    ┆ f64    │
╞════════╪════════╪════════╪════════╪════════╪════════╪════════╪════════╡
│ 37.304 ┆ 55.491 ┆ 40.932 ┆ 57.545 ┆ 36.495 ┆ 59.135 ┆ 33.024 ┆ 56.886 │
└────────┴────────┴────────┴────────┴────────┴────────┴────────┴────────┘

distance

df = pl.DataFrame(
    [
        pl.Series("point_1", [{'x': -8893.663914126577, 'y': 19116.178523519542, 'z': 14.98697863612324}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
        pl.Series("point_2", [{'x': 1553.3742543335538, 'y': 2916.118342842441, 'z': 15.580027717165649}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
    ]
)
Find Euclidean distance between two points using all 3 components of a point-vector
df.with_columns(
    distance=pl.col("point_1").distance.euclidean_3d(pl.col("point_2"))
)

shape: (1, 3)
┌──────────────────────────────┬────────────────────────────┬───────────┐
│ point_1                      ┆ point_2                    ┆ distance  │
│ ---                          ┆ ---                        ┆ ---       │
│ struct[3]                    ┆ struct[3]                  ┆ f64       │
╞══════════════════════════════╪════════════════════════════╪═══════════╡
│ {-8893.664,19116.179,14.987} ┆ {1553.374,2916.118,15.580} ┆ 19276.477 │
└──────────────────────────────┴────────────────────────────┴───────────┘
Find cosine similarity between between two points using all 3 components of a point-vector
df.with_columns(
    cosine_sim=pl.col("point_1").distance.cosine_similarity_3d(pl.col("point_2"))
)

shape: (1, 3)
┌──────────────────────────────┬────────────────────────────┬────────────┐
│ point_1                      ┆ point_2                    ┆ cosine_sim │
│ ---                          ┆ ---                        ┆ ---        │
│ struct[3]                    ┆ struct[3]                  ┆ f64        │
╞══════════════════════════════╪════════════════════════════╪════════════╡
│ {-8893.664,19116.179,14.987} ┆ {1553.374,2916.118,15.580} ┆ 0.602      │
└──────────────────────────────┴────────────────────────────┴────────────┘
Find Euclidean distance between two points using 2 components of a point-vector (X and Y)
df.with_columns(
    distance=pl.col("point_1").distance.euclidean_2d(pl.col("point_2"))
)

┌──────────────────────────────┬────────────────────────────┬───────────┐
│ point_1                      ┆ point_2                    ┆ distance  │
│ ---                          ┆ ---                        ┆ ---       │
│ struct[3]                    ┆ struct[3]                  ┆ f64       │
╞══════════════════════════════╪════════════════════════════╪═══════════╡
│ {-8893.664,19116.179,14.987} ┆ {1553.374,2916.118,15.580} ┆ 19276.477 │
└──────────────────────────────┴────────────────────────────┴───────────┘
Find cosine similarity between between two points using 2 components of a point-vector (X and Y)
shape: (1, 3)
┌──────────────────────────────┬────────────────────────────┬────────────┐
│ point_1                      ┆ point_2                    ┆ cosine_sim │
│ ---                          ┆ ---                        ┆ ---        │
│ struct[3]                    ┆ struct[3]                  ┆ f64        │
╞══════════════════════════════╪════════════════════════════╪════════════╡
│ {-8893.664,19116.179,14.987} ┆ {1553.374,2916.118,15.580} ┆ 0.602      │
└──────────────────────────────┴────────────────────────────┴────────────┘

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

polars_coord_transforms-0.12.1.tar.gz (30.1 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

polars_coord_transforms-0.12.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (4.4 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ ppc64le

polars_coord_transforms-0.12.1-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (4.0 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ ARMv7l

polars_coord_transforms-0.12.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.9 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ ARM64

polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (4.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ppc64le

polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (4.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ i686

polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (4.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARMv7l

polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (4.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ppc64le

polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (4.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686

polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (4.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARMv7l

polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (4.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ppc64le

polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (4.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (4.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARMv7l

polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

polars_coord_transforms-0.12.1-cp310-cp310-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.10Windows x86-64

polars_coord_transforms-0.12.1-cp310-cp310-win32.whl (2.8 MB view details)

Uploaded CPython 3.10Windows x86

polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (4.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ppc64le

polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (4.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (4.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARMv7l

polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

polars_coord_transforms-0.12.1-cp310-cp310-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

polars_coord_transforms-0.12.1-cp310-cp310-macosx_10_12_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.10macOS 10.12+ x86-64

polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (4.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ppc64le

polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (4.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (4.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARMv7l

polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (4.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ppc64le

polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (4.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686

polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (4.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARMv7l

polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

File details

Details for the file polars_coord_transforms-0.12.1.tar.gz.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1.tar.gz
Algorithm Hash digest
SHA256 f4f638f634f331e9371c75ed082326839078cadc804c9f63786aad28e9ea3c94
MD5 272b7e9252c4533102176e1351b80872
BLAKE2b-256 b1cb063a08a3d36c45adce7c659467e4ccccd477a0ee496b635e800784da03e3

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 653470d2bba38866c70eb2ed437d6659f6f0578eed67b3b895dd6ce770322a67
MD5 4f424d3cd72901c578a9bbdba7f272dd
BLAKE2b-256 e36001cb8fe98ba3dda904c150936d78e0db7213269bd6d3d536a46561262df0

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 94e1b30082185486aa564fef48ff989eb814bf3ac58a40fc0c207c5510386ed9
MD5 de46a06a3dcba5e94be8a1c558eb06c6
BLAKE2b-256 fe80bb54417badf1db79a41297165ecd4598d9e3ec7bc8c6c861ac4094ac39df

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f8dc657c9519b18a8f9a9870073a0e077ef4481efee043001150bb783d892c23
MD5 f0d995ab1a6cc46f28405c245b708245
BLAKE2b-256 b8ac3f1082fe4a03ed229d8bcf927cc427676ef25a47e9acdbbd7f402397e403

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 370a185784a6f2295306714424e7bcb16c8a6fd9e5b388c73e89dfdea394e30f
MD5 499f53aca79cb9c5a873a4804223b8a2
BLAKE2b-256 b9b203827fcb5e4f765834a85480218e4d8428957560d9390772ea34a8da9fb0

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5a5b8045c36d3b616cdcb3d1ecdadeeebda2ba1a2e047a7ede4f8d30fd07f9a4
MD5 e9541f99edec229804145f592f9d2072
BLAKE2b-256 24a0b2d3cfa703f37aecf220759aad0c02d2dba74255e4bd4bb8b08599075aaf

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 fb6b1b909ef44131b82920bfcb2fffb34d689769dfc72b5c327457066a081040
MD5 d52b1545ce1f2e67d3239429fe7f5660
BLAKE2b-256 04f6469e813f32546387a74cd982af8c4affde479d422fa2d7325e00441def1f

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 c9fa69633894007b3f055b10dc2a42c15a84cbfbd146e3fca1ffd378a347735a
MD5 5b17fa0b28158900c4196d27b5f1c31a
BLAKE2b-256 0720534db295871f6d3cb6a8a3e4d7eccf314cfa6e5d493e99946dd5957a17f4

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c0f8fe2f51e922d90bd3dbcec57c2d1456096c5552d0cde81ed61569f759bd58
MD5 594aa01bbe0669943222b9d973fff1a9
BLAKE2b-256 8ef79c0e5100cece79915702e005151826f31a31470931be6deb07d262e8025a

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 26264526c2dadbc13bc73a9bb39a32f4fc2cf2a0d17c22005231e5563f7d8300
MD5 6966e60bcb2ea09fb5e4d12300c2e7be
BLAKE2b-256 1d8c553de069753f1c6e60d710c94a7b0f076d154dcb0da4803991250ac15aad

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 5b51c49a747b1154faccf56d4fbef42a0aa39c10ce40be4494fc85bc3df1b642
MD5 e0e0236d8cf452b6dc227a69c26bc744
BLAKE2b-256 6c63f7d69517dc6971916bd5a9ea10bd291f867b2214602e7ccbcbb386aa88d7

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6532651614e2608d4494ab7ee6a369e518dcb9d2f01dbd36892e2236cf88fd0e
MD5 b9c13c4fe809bd93eacf518557772747
BLAKE2b-256 7ee822527e50eeb2ca3ef4aa24cf7ce6dc329c89866cb000ed41c08ac5f7115b

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c0d7bc08e78377ca68641a7f728abdfa2f0f0ef12cd804d79dd940deaa7bb9a3
MD5 9f19f75d556a097bef61e2c4fcebee22
BLAKE2b-256 9ccdce3f7e540f6de9e54df8abdd873eb05a4ac334c5eb0f088ff876fad64363

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 aa2a5146d2b196f008f2fac287cdaeea4ad570e6a13943deb567c760b4a9c4f2
MD5 f96b867cf09723f532cda8f122cab803
BLAKE2b-256 9243c17411ed3e877c04f4edab123b825dfc33fd4bd324a223d58b85b99e17e2

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a662b7feb3856eab7ac1c847b0730fbba1507a8538109895bd22c0e06ff633c
MD5 2b2a28e6dd005ef4dc4679d8eb473ae9
BLAKE2b-256 241efe7b9d9c528dc7f2540f63860ea74274dcfd5f0544674efdbef5e250f652

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8ecafbb36923332086a10d1db05c92efca59d6627778e60184a8d439105cf47
MD5 aa2553f40950f3acc62999f01bb1a981
BLAKE2b-256 fad7864b5c1cc5dc8b0e9987df3e3cd7974195a0bb1569f6e7e0e20151e7c29d

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1c68efd26d865988d5410b597abcbb0192756c898ef44e395c5470db353f685c
MD5 435b7946c8cf3beca218d9d432745ebc
BLAKE2b-256 27f20b898845714f6dc5cb65477569d83d3480245d2a0c99987c742c2897653c

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bfc79fc26f43981d0554d0ee3edc65277bcbecedfa8888dcaad2423ae75ad768
MD5 4e8c1d275e921e6ff98ae0350e3cf7c8
BLAKE2b-256 a1785261978805cdab0421f9df4c893a645dfb49197f51e90c19533b018cefdb

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 44f19008348e84bed1a9f5ed28d05b8425bd898527ebcc0cff45825ff31f4e1c
MD5 e703f230ce6a0a3ba2ff1e5857277b49
BLAKE2b-256 c21596479cb6d21d6634402efbd4ef63fe47a356cfd7bc6de3e3677bd3779129

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 748e7db0018e814a3df43b7c82075600c16c495950065022d7a790b548234052
MD5 bd9064a7a6f9a260589473382ad6c484
BLAKE2b-256 817fd9ffd4d84f32eb4ec415176e02f06751e57a686862bb97e6adf4a36d3c68

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98b714a4e2637cdd4bb3dec644e6bf1f1ff542e5ecc24474897bc7a64d02c704
MD5 840df3ac5101d247b515a8243d9cdf2a
BLAKE2b-256 9a3b85dcf0bd71f83c69c6055625fbe655d791dd7be34feab97e02ff9ab196bb

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 452f54158266fcb37b528a5b192e810f260e29bc839f8bfe15ff2f69172b4e1a
MD5 887e8425d7587304f76f556c7c96c5e1
BLAKE2b-256 9097965894cadccf9b6dca2103e514c16cfc9944dc6b421b0d4b6e04a443e72b

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dcb7f03ca0960c44f0af91860ad4359cc30a3fc12bfefd8951f52593e45941bf
MD5 47b5e7fc338d39f53c4ca08325c0443f
BLAKE2b-256 17628ddd9e452b6329b6614e7d4337340bcdc730c8324de3461946565bd750b4

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 6de530928be9797b048d78f90d9db0127a1fe571a7f89b11e01ecfb35bef7ab5
MD5 1c886073cf05e497c0c8f1fc7f5ddaa1
BLAKE2b-256 8d1f0a21e643893643b6760ca6e66cff0fc2e867ab68403d12acfef0c2816817

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aafc7782b778d2723db89cef6bee59a5ea577f7a92430aa606f3daef163a8801
MD5 a483c13f0aff76db4f79cd85e32c0385
BLAKE2b-256 84d8429fac3f593b03dcf411b1c06324655ddb2013399261cd05bd6eec785127

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a44868723f500633132950c51243022bfc16ce97a4d40278614241262571729
MD5 da0da01019f50f60d83cf93d2b414aaa
BLAKE2b-256 faf7f737f68f21d5f88c479a225efb160b75dd3528ae2d35a27ba7841b914d08

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c2b2e7c7dab0208326d1a338cf706196b24175807a5a320f879fef5a9ce894a8
MD5 6c5fb53b4e45c55dbfafa8aafd3b3296
BLAKE2b-256 80ceb0b1ce1fc742f8df375108e3d9bdf3e88c2129f65167b47ce5cc82c2de13

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 aed5c2d4a1d10feb6b820cc9604831369428fc482605b6584dfc0f3033094b6d
MD5 37dc763887f5d20116872bdd2956c912
BLAKE2b-256 6b35c0a6126473f0218697d2ec9b6339ebe1438344ff80cddbc7cbfb5c01563c

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 8fe59530af9612d74b24ab987c441a897be90675979771c78e672c53577e1cff
MD5 6be407930c20487a667b938daa51fda6
BLAKE2b-256 5c716a4e2f139aaf8429924d8f6d478c41791ed440210653fef31348617b065d

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 631680e8343d22605020a17f33ad53e5e1d377bf2a92bc17cf9510275e71a605
MD5 e38824cea72401b20d6556c914ec59f6
BLAKE2b-256 77e2b8ef0c0a90f2938ea5e2af282736fa84b579373bcadd20157afd78cfeb22

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 973a05b57d2d582c8fe7c7c0286dcc8775b2bb807df98f394c4fc362360f02e2
MD5 ab07d4461bccc954e1ac12404ff36b87
BLAKE2b-256 8aeba66bf024142026304a8622be676a7add7d0823834981bf7aa0575173470f

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 8c084e88b115d1c3c68e73323ced5847cd6cc4544146965aa81363a4b2f849b2
MD5 da79e98afba091e25df3f18286b5fc26
BLAKE2b-256 8a22f93e7be6ff369084fdf441a63ee0dd9db0377c4fb045cfd280ac0f63108c

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3481aeea12f2121eb4ecaeb580848dd4265fbc7c87f2101ca06d8b07ee5389ed
MD5 6a17cecbc628948cfd7de5ebf0ef76ad
BLAKE2b-256 0fc473afd1bde8063d361435138c33329d6923a2fac15c6715b9b9ee965cda00

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8cefdff9a6ae74f55ee6ab1c595a4d436e5414acca55fd5fbead09b917764bfb
MD5 0098c60a91c72219d4319f9f3b846cc0
BLAKE2b-256 64ae1c651599e807476b598613c9defa714d920c3a97c3063497e1743533d578

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f6a755ee39d4964b68e849afea03c6ff7ff0f0f21580036b7b78ec9875f6d159
MD5 7172b876fbf0969c002f838a27a65592
BLAKE2b-256 f344b9cc0d3c0cf2bb6dbc73efb15892d2cffec0c894b39efc6ec178c6ff33b7

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 2ed3ceeb9c18e658c03b92d8d2ddafab073b83c79190227c9b7f70cabbe57fd7
MD5 994363c67347c71dbccb814f4455f373
BLAKE2b-256 e2ad4d021f48af06961e7b59edccdb6b1bb88d9dd50bbb02099461cde0805e0e

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8128adffc0a35f0061fe66b0dc6a0f2f60eb8f09160a227d6160c95307033654
MD5 bcd3061d77fc7ad82eaa2171ccc6772d
BLAKE2b-256 4fc6f50eb6a7a4f46644adad5785d4a53c97ad228113edde28131063ff559ed9

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7afd0c93ef25ca6534ef81b4a1e31e03a69457a7c8b2a77ad158a772a9b26116
MD5 465c6b9f095dd98ddb91703e2634bec8
BLAKE2b-256 e541c3a9be42ac87c2b6a4b89fb2ac44016057a4e9e7a11a08e1c0ded481ac9f

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 7e7d0e74ed4781e1ef8c45177aa5f05a6ebcd5705fe53a0e68cc45c36a676692
MD5 5565f0f45744b055e1a978e8582b0b1e
BLAKE2b-256 1d562845452c51b705b9933cef62b4ca09ba930730af9d5bb5bd09b8d5d1feb6

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e91d7720c6964e6a9a054d0681dc19c8c5980e66224baee5ae66706a27336449
MD5 a6d4db33779becc53399df3169fe990e
BLAKE2b-256 f1e8e108bc72d906d71f1ff2e144c994a286372ac2082985fdca037e0f7ec41f

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 854a12675c8d820dbb2685e6d47d68a7f3d3529ee5f2f53da48786d075aece9d
MD5 2268635a99cec72bcdeede2b52c67e83
BLAKE2b-256 91e771c9697ebf5ebde9dd3afc14b96cc25615d33dc096accc8fdae4ff86a2ee

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b6d1c1111c22dc952465809eae78ba63a5086f68b769ca9b31482a1e2535effe
MD5 72b7266cd3ba02d18f4b9bb79da84245
BLAKE2b-256 ae6130285da7a039f5d0cc85bcc66b201df4a5f21ad72da666e9776e1c981a57

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 9cbc290cff48cbfe5bb4e70f3235565f0fdbae892fafb03712f66a38f119bfec
MD5 c69cff1183767a40c4dd3d616cc6daab
BLAKE2b-256 5784a602407cd7fd581e0c9c843632defc703fdcf5d89a650f88e885faeb4b55

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f0feb729e88a29aa42330f1b4a79576db68adb2eef2ebcbec043f274b3f01972
MD5 a7c9796ee7aa08d32dd5c16f21dca2f5
BLAKE2b-256 fdfb8f58811165997530fae5ac39576de19fdf5e58aeb6971a6a5c583b94b2bd

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff6d6b6e6ec53f1a97754d336da01d72d2534ea77cde49614b05180061fa9a9e
MD5 9eefbcac71a43c236ed5eb452bd9ad7d
BLAKE2b-256 834f289c0da1e4252f1443e737e83695cd7f6c7b25f5ebf0a374d91d30ceb0e4

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2c6a61d7a40bf77eaa6cd6623424ba83c503dc479fb6563948cb0bb8aa21b718
MD5 92eca3cf850cac32015c3c4f8813dcbd
BLAKE2b-256 32edb313ff7dcf6d0bd2ff5cbb3955c0c34428dd8533b6d01ed418c9d365eb61

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 50504ae72283aa1d31041488b80bcf167aefe20016bee37633161009de0e7a39
MD5 fbb93de9f9d6544963c9a92a5e2226d4
BLAKE2b-256 65cef7137ce6897c029494d747a0e94a00edd1e72632ee95e7f824962869ddca

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 51e6339da0713aa027058e1ba819a75b792c7905179422ee73b5e82ea7e4c88a
MD5 7eddbcf1d1964330fcd1567cb0c701a7
BLAKE2b-256 7290c77b013fcc499d00cd319aa2b60c7ed3b318b81b1dd107c5678c9d9e26ae

See more details on using hashes here.

File details

Details for the file polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for polars_coord_transforms-0.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b7bee32c7c5239b164f2dcbff972c836ea7c296134647b474207e3f30fb21e3
MD5 3464f794a7c0232e99379804e53d3f81
BLAKE2b-256 edaab6c73decc9b2dc8fb94170ff0a5e2e85a37eed5b9dc981e22bfdce368ed3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page