Skip to main content

prettified interface for TA-Lib

Project description

pretty_talib

python_version PyPI downloads/month

Description

Prettified interface for TA-Lib

Install

  1. Install TA-Lib dependency

    • For Mac it's easy as that
      brew install ta-lib
      
    • For other platforms, or troubleshooting please check the installation guide for TA-Lib
  2. Install pretty_talib

pip install pretty_talib
# or
pip3 install pretty_talib

Important Note

THE TYPE OF 'data' AND THE VALUES OF 'use_builtin_types' AND 'use_objects' HIGHLY AFFECTS EFFICIENCY.

SEE BENCHMARK BELOW (Ran 250 times)

--------------------------------------------------------------------------------------------------
| rank |                                setup                               |  duration  |  perc |
--------------------------------------------------------------------------------------------------
|    1 | data: Dict,             use_builtin_types=False, use_objects=False | 0.00626893 |       |
|    2 | data: Dict,             use_builtin_types=True,  use_objects=False | 0.02440002 | 3.89x | -> ~5.4x slower
|    3 | data: Dict,             use_builtin_types=True,  use_objects=True  | 0.03171391 | 5.05x | -> ~5.9x slower
|    4 | data: pandas.DataFrame, use_builtin_types=False, use_objects=False | 0.03171391 | 5.05x | -> ~6.1x slower
--------------------------------------------------------------------------------------------------

Usage

# System
import json

# Pip
import numpy

# Local
from pretty_talib import get_stats, ALL, FunctionName



l=50
timeperiod = 5
data = {
    'open': numpy.random.random(l),
    'high': numpy.random.random(l),
    'low': numpy.random.random(l),
    'close': numpy.random.random(l),
    'volume': numpy.random.random(l)
}

stats = get_stats(data, timeperiod=timeperiod, use_builtin_types=False)

with open('stats.json', 'w') as file:
    json.dump(stats, file, indent=4)

# BENCHMARKS

# from funcmeasure import measure

# def use_objects_false_use_builtin_types_false():
#     get_stats(data, types=ALL, timeperiod=timeperiod)

# def use_objects_false_builtin_types_true():
#     get_stats(data, types=ALL, timeperiod=timeperiod, use_builtin_types=True)

# def use_objects_true_use_builtin_types_true():
#     get_stats(data, types=ALL, timeperiod=timeperiod, use_objects=True)

# measure(
#     [
#         use_objects_false_use_builtin_types_false,
#         use_objects_false_builtin_types_true,
#         use_objects_true_use_builtin_types_true
#     ],
#     times=100
# )

Credits

TA-Lib by mrjbq7

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pretty_talib-0.0.10.tar.gz (12.6 kB view hashes)

Uploaded source

Built Distribution

pretty_talib-0.0.10-py3-none-any.whl (13.5 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page