Skip to main content

primitiv: A Neural Network Toolkit. (Python frontend)

Project description

Features

  • Dynamic and incremental graph construction

  • On-demand memory allocation

  • Automatic minibatch broadcasting

  • Mostly device-independent

  • Simple usage

Install

Prerequisites:

  • Python 3 (3.5 or later)

  • NumPy (1.11.0 or later)

  • Cython (0.27 or later)

  • scikit-build (0.6.1 or later, only for building)

  • (optional) CUDA (7.5 or later)

  • (optional) OpenCL (1.2 or later) and OpenCL C++ binding v2

Install dependencies:

pip3 install numpy cython scikit-build

Install primitiv without CUDA and OpenCL:

pip3 install primitiv

Install primitiv with CUDA and/or OpenCL support:

# Enable only CUDA
pip3 install primitiv --global-option --enable-cuda

# Enable both CUDA and OpenCL
pip3 install primitiv --global-option --enable-cuda --global-option --enable-opencl

Resources

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

primitiv-0.3.1.dev123.tar.gz (154.7 kB view details)

Uploaded Source

File details

Details for the file primitiv-0.3.1.dev123.tar.gz.

File metadata

File hashes

Hashes for primitiv-0.3.1.dev123.tar.gz
Algorithm Hash digest
SHA256 830e10d3b4241dcd3365517b205405d19f0d147e97499e7bef2f32f726d95812
MD5 4d32bcccf3a823fe792b9b631fbe1517
BLAKE2b-256 6ea0ddda2a6cb0127054b0d156ac67a92272776103265d7e89ea22f2983d14dc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page