Skip to main content

Process Transformer Network for Predictive Business Process Monitoring Tasks

Project description

Process Transformer

Transformer Neural Model for Business Process Monitoring Tasks

Tasks

  • Next Activity Prediction
  • Time Prediction of Next Activity
  • Remaining Time Prediction

Install

pip install processtransformer

Usage

import argparse
import tensorflow as tf
from processtransformer import constants
from processtransformer.data import loader
from processtransformer.models import transformer

parser = argparse.ArgumentParser(description="Process Transformer - Next Activity Prediction.")
parser.add_argument("--dataset", required=True, type=str, help="dataset name")
parser.add_argument("--task", type=constants.Task, 
    default=constants.Task.NEXT_ACTIVITY,  help="task name")
parser.add_argument("--epochs", default=1, type=int, help="number of total epochs")
parser.add_argument("--batch_size", default=12, type=int, help="batch size")
parser.add_argument("--learning_rate", default=0.001, type=float,
                    help="learning rate")

# Load data
data_loader = loader.LogsDataLoader(name = args.dataset)

(train_df, test_df, x_word_dict, y_word_dict, max_case_length, 
    vocab_size, num_output) = data_loader.load_data(args.task)

# Prepare training examples for next activity prediction task
train_token_x, train_token_y = data_loader.prepare_data_next_activity(train_df, 
    x_word_dict, y_word_dict, max_case_length)

# Create and train a transformer model
transformer_model = transformer.get_next_activity_model(
    max_case_length=max_case_length, 
    vocab_size=vocab_size,
    output_dim=num_output)

transformer_model.compile(optimizer=tf.keras.optimizers.Adam(args.learning_rate),
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])

transformer_model.fit(train_token_x, train_token_y, 
    epochs=args.epochs, batch_size=args.batch_size)

See complete code examples within the github repository for other tasks, including preparing raw process data for transformer model.

Tools

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

processtransformer-0.1.3.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

processtransformer-0.1.3-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file processtransformer-0.1.3.tar.gz.

File metadata

  • Download URL: processtransformer-0.1.3.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.5.0.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for processtransformer-0.1.3.tar.gz
Algorithm Hash digest
SHA256 514c0e48f5f87d152a05ac05e6c8bb84a22ad20ce1c22c0d4038a54a53b6a857
MD5 1ec6e58cbf609107d928bc5393f0ed23
BLAKE2b-256 dc08e223252ce4b5afc404ca2eb7c20de9d5d3384b26ba4818ee818758bf57c2

See more details on using hashes here.

File details

Details for the file processtransformer-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: processtransformer-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 11.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.5.0.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for processtransformer-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 4dd9b59abbe4ff08abcf0c7af989a3e16f91bae144094ed2178c1b43a0647ace
MD5 0b75cbb989c342e863390b63b790fa22
BLAKE2b-256 98abe39e8ad6b58bb32598c95d2400894e6e380653d02acbca402b1824b651ea

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page