Skip to main content

A package to calculate protein sequence descriptors

Project description

ProDEC

A package to easily calculate descriptors of protein sequences and their common transforms.

Installation

pip install prodec

Getting started

ProDEC is organised in three classes:

  1. ProteinDescripors - loads all available descriptors and allows you to instantiate them
  2. Descriptor - instantiated from the latter, allows retrieval of raw descriptor values
  3. Transform - to calculate domain averages, auto-cross covariances (ACC), physicochemical distance transformations (PDT) and fast Fourier transform (FFT)
  4. TransformType - to identify the transform to be performed

Let us get the largest protein sequence from uniprot (as of May 29th, 2020).

import urllib.request

url = 'https://www.uniprot.org/uniprot/A0A5A9P0L4.fasta'
with urllib.request.urlopen(url) as data:
    sequence = ''.join([line.decode('ascii').strip() for line in data][1:])

First load available descriptors:

from  prodec import *
pdescs = ProteinDescriptors()

and print out their ID:

print(pdescs.available_descriptors)

Identify the descriptor ID corresponding to Zscales (Hellberg et al. 1987).

zscales = pdescs.get_descriptor('Zscale Hellberg')

Get information about the descriptor as defined in the original article

print(zscales.summary)

and values defined for each amino acid.

print(zscales.definition)

Now, obtain such descriptor values for the protein sequence.

raw_values = zscales.get(sequence)

To transform raw values, first identify available transforms (static method).

print(Transform.available_transforms())

Let us instantiate the desired transform (here domain averages)

avg_zscale = Transform(TransformType.AVG, zscales)

and obtain 50 domain averages (defaults to 2 if not specified).

avg_values = avg_zscale.get(sequence, domains=50)

One can get information about the transform.

print(avg_zscale.summary)

Similarly, ACC, PDT and FFT can be obtain with

acc_zscale = Transform(TransformType.ACC, zscales)
# or Transform('ACC', zscales)
acc_values = acc_zscale.get(sequence, lag=10) # default lag=1
pdt_zscale = Transform(TransformType.PDT, zscales)
# or Transform('PDT', zscales)
pdt_values = pdt_zscale.get(sequence, lag=100) # default lag=1
fft_zscale = Transform(TransformType.FFT, zscales)
# or Transform('FFT', zscales)
fft_values = pdt_zscale.get(sequence)

Advanced usage

Descriptors

  • Flattening raw values

In the case of multiple values being defined for one amino acid, the resulting sequence descriptors are flattened by default. This means that one gets a list in which values for each amino acid are contiguous. This feature can be turned off, resulting in a list of lists, each dimension being separate from the other (e.g. for Zscales Hellberg, a list containing 3 sub-lists: the first sub-list with values of the first dimension for the whole sequence).

zscales.get(sequence, flatten=False)
  • Dealing with gaps

In the case of aligned sequences, one may want to omit gaps. By default, gaps are considered and given a value of 0.0 . Gaps can either be omitted like so:

zscales.get(sequence, gaps='omit')

or given any arbitrary value

zscales.get(sequence, gaps=-1)
  • Non-standard amino acids

If working with another dictionary than the 20 standard amino acids, one can provide the ones they are working with. This is only possible if the user defines their own descriptor supporting these aminoacids.

pdescs = prodec.ProteinDescriptors()
mydesc = pdescs.get('Descriptor supporting Selenocysteine and Pyrrolysine')
mydesc.get(sequence, dictionary=list('ACDEFGHIKLMNOPQRSTUVWY'))
  • Raychaudhury's descriptor

Rachaudhury et al.'s values can be weighted by different powers (default: -4).

pdescs = prodec.ProteinDescriptors()
raych = pdescs.get('Raychaudhury')
raych.get(sequence, power=-3)

Calculation of Raychaudhury's values is O(n²) . To speed this calculation, a sliding window optimization has been made, resulting in an O(n) algorithm. By default the window width is set to 120 giving accuracy to the third decimal place. One may change the width by specifying the precision (half of the window size).

raych.get(sequence, prec=80) # Window size = 160

To turn the optimization off and get full precision:

raych.get(sequence, prec=0)

Transfoms

  • Compatibility

Some transforms cannot be calculated for binary descriptors. Some others can only be calculated with binary descriptors. One can check for compatibility between a transform and a descriptor.

psm = pdescs.get_descriptor('PSM')
prodec.Transform.is_compatible('AVG', 'PSM')
  • Transforms and advanced descriptor arguments

All arguments a Descriptor accepts can be supplied to a transform's get method.

pdt_zscale.get(sequence, lag=10, average=False, flatten=False)
raych = pdescs.get('Raychaudhury')
acc_raych = prodec.Transform('ACC', raych)
acc_raych.get(sequence, power=-3, gaps='omit', prec=100, flatten=False, lag=12)

Adding new descriptors

Supplied descriptors are described in the file named data.json under the src folder. The list of available descriptors is loaded from the data.json file when ProteinDescriptors is instantiated. Add your favorite descriptor to the list, respecting the format of the file and giving it a unique ID, for it to be available.

Checking descriptor for amino acids support

One can check the compatibility of their engineered descriptor with any sequence.

vstv= pdescs.get_descriptor('VSTV')
vstv.is_sequence_valid('ABCDEFGHIJKLMNOPQRSTUVWXYZ')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

prodec-1.0.2.post3.tar.gz (52.9 kB view hashes)

Uploaded Source

Built Distribution

prodec-1.0.2.post3-py3-none-any.whl (53.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page