Skip to main content

Display progress as a pretty table in the command line.

Project description

Progress Table

PyPi version PyPI license

Lightweight utility to display the progress of your process as a pretty table in the command line.

example

Designed to monitor machine learning experiments, but can be used for anything. Allows you to quickly see what is going on. Increases readability and cuteness of your command line logging.

Features

  • Displaying pretty table in the terminal
  • Progress bar embedded into the table
  • Exporting data as lists, numpy arrays or pandas dataframes
  • Built-in basic data aggregation: sum and mean

Goal

Change this:

example

Into this:

example

Example

Click here for examples of integration with PyTorch and Keras: integrations.md.

import random
import time
from progress_table import ProgressTable

# Define the columns at the beginning
table = ProgressTable(
    columns=["step", "x", "x squared"],

    # Default values:
    refresh_rate=10,
    num_decimal_places=4,
    default_column_width=8,
    print_row_on_update=True,
    reprint_header_every_n_rows=30,
    custom_format=None,
    embedded_progress_bar=False,
)
table.add_column("x", width=3)
table.add_column("x root", color="red")
table.add_column("random average", color=["bright", "red"], aggregate="mean")

for step in range(10):
    x = random.randint(0, 200)

    # There are two equivalent ways to add new values
    # First:
    table["step"] = step
    table["x"] = x
    # Second:
    table.update("x root", x ** 0.5)
    table.update("x squared", x ** 2)

    # Display the progress bar by wrapping the iterator
    for _ in table(range(10)):
        # You can use weights for aggregated values
        table.update("random average", random.random(), weight=1)
        time.sleep(0.1)

    # Go to the next row when you're ready
    table.next_row()

# Close the table when it's ready
table.close()

# Export your data
data = table.to_list()
pandas_df = table.to_df()
np_array = table.to_numpy()
┌──────────┬─────┬───────────┬──────────┬────────────────┐
│   step   │  x  │ x squared │  x root  │ random average │
├──────────┼─────┼───────────┼──────────┼────────────────┤
│    0     │  50 │    2500   │  7.0711  │     0.2796     │
│    1     │ 186 │   34596   │ 13.6382  │     0.3897     │
│    2     │  70 │    4900   │  8.3666  │     0.5524     │
│    3     │ 170 │   28900   │ 13.0384  │     0.5030     │
│    4     │  71 │    5041   │  8.4261  │     0.5756     │
│    5     │  17 │    289    │  4.1231  │     0.3962     │
│    6     │  77 │    5929   │  8.7750  │     0.6333     │
│    7     │ 138 │   19044   │ 11.7473  │     0.6287     │
│    8     │ 131 │   17161   │ 11.4455  │     0.3324     │
│    9     │ 154 │   23716   │ 12.4097  │     0.4751     │
└──────────┴─────┴───────────┴──────────┴────────────────┘

Installation

Install Progress Table easily with pip:

pip install progress-table

Links

Alternatives

  • Progress bars: great for tracking progress, but they do not provide pretty CLI data display

    • tqdm
    • Keras.utils.Progbar
  • Libraries displaying data: great for presenting data, but they lack the tracking progress element

    • tabulate
    • texttable

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

progress-table-0.1.10.tar.gz (9.7 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page