SAINT
Project description
This is SAINT(Spatially Aware Interpolation Network for Medical Slice Synthesis)
-
.nii->.pt
from py_SAINT.STAGE1 import nii2pickle nii2pickle.nii2pt(ori_dir_path,output_file_path)
parameters description ori_dir_path file path containing .nii output_file_path file path of the generated .pt #eg: nii2pickle.nii2pt("/home1/xx/xx_data/273data-yscl/1T2/1/002_OCor_T2_FRFSE/","/home1/xx/SAINT/Data/Stage1_Input/TEST/HR/")
-
Interpolate with sag and cor view respectively
from py_SAINT.STAGE1 import interpolation interpolation.get_Stage1_result (scale ='4',save =/path/ ,dir_data ='/path/',n_colors =3 ,n_GPUs =1,rgb_range =4000, view ='sag',gpu='0') interpolation.get_Stage1_result (scale ='4',save =/path/ ,dir_data ='/path/',n_colors =3 ,n_GPUs =1,rgb_range =4000, view ='cor',gpu='0')
parameters description scale super resolution scale (eg:2,3,4,6) save file path of save dir_data dataset directory (Note that the dir_data path should point to a folder that contains subfolders named 'TEST', each of which needs to have a 'HR' and 'LR' subfolder, 'HR' is high resolution file , 'LR' is low resolution file. Data should go accordingly in this structure. n_colors number of channels to use n_GPUs number of GPUs rgb_range maximum value of RGB view view of interpolation (Note the --view option performs inference on the volume from either the sagittal or coronal axis. Note that the whether it's actually sagittal or coronal depends on the orientation of the data.) #eg: interpolation.get_Stage1_result (scale ='4',save ="/home1/xx/SAINT/Data/Stage1_output_sag_cor/" ,dir_data ='/home1/xx/SAINT/Data/Stage1_Input/',n_colors =3 ,n_GPUs =1,rgb_range =4000, view ='cor',gpu='0') interpolation.get_Stage1_result (scale ='4',save ="/home1/xx/SAINT/Data/Stage1_output_sag_cor/" ,dir_data ='/home1/xx/SAINT/Data/Stage1_Input/',n_colors =3 ,n_GPUs =1,rgb_range =4000, view ='sag',gpu='0')
-
Before going to the RFN stage, sagittal and coronal-wise SR'ed volume needs to be recombine into a single volume for inference. In simple terms just concatenate them in the first dimension, coronal SR goes in channel 0 and sagittal SR goes in channel 1
from py_SAINT.STAGE1.process import cor_sag_comb_test cor_sag_comb_test.comb_cor_sag(files_dir='/path/',input_sag_cor_dir='/path/',out_dir='/path/', scale=4)
parameters description files_dir dataset directory input_sag_cor_dir path to the folder containing sag and cor out_dir generated combine path scale super resolution scale #eg: cor_sag_comb_test.comb_cor_sag(files_dir='/home1/mksun/SAINT/Data/Stage1_Input/TEST/HR/',input_sag_cor_dir='/home1/mksun/SAINT/Data/Stage1_output_sag_cor/results/raw/',out_dir='/home1/mksun/SAINT/Data/combine_cor_sag_out/TEST/', scale=4)
-
Residual-Fusion
from py_SAINT.STAGE2 import fuse fuse.get_Stage2_result(save ='/path/',dir_data ='/path/' ,n_GPUs =1 ,rgb_range =4000,gpu='0')
parameters description save file path of save dir_data step3_out_dir n_GPUs number of GPUs rgb_range maximum value of RGB #eg: fuse.get_Stage2_result(save ='/home1/mksun/SAINT/Data/out_fuse/',dir_data ='/home1/mksun/SAINT/Data/combine_cor_sag_out/' ,n_GPUs =1 ,rgb_range =4000,gpu='0')
-
.pt->.nii(option)
from py_SAINT.STAGE1 import pt2nii pt2nii.pt2nii(ori_nii_dir_path, pt_dir_path,nii_dir_path)
parameters description nii_dir_path nii_output_dir #eg: pt2nii.pt2nii(ori_nii_dir_path='/home1/mksun/xh_data/273data-yscl/1T2/1/002_OCor_T2_FRFSE/',pt_dir_path='/home1/mksun/SAINT/Data/out_fuse/results/raw/',nii_dir_path='/home1/mksun/SAINT/Data/final_nii/')
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
py_SAINT-1.7.0.tar.gz
(13.2 MB
view details)
Built Distribution
py_SAINT-1.7.0-py3-none-any.whl
(13.3 MB
view details)
File details
Details for the file py_SAINT-1.7.0.tar.gz
.
File metadata
- Download URL: py_SAINT-1.7.0.tar.gz
- Upload date:
- Size: 13.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 63537eca490672c4f0fc05814290fcadbce0ca11603c13ef30f304e3416acc74 |
|
MD5 | 14c0b22cb26dec94b867dc9378db3987 |
|
BLAKE2b-256 | 797702b2114c4127af6ad211c8358dee4d6160c1cb0be48a4a4635ab93afe6e2 |
File details
Details for the file py_SAINT-1.7.0-py3-none-any.whl
.
File metadata
- Download URL: py_SAINT-1.7.0-py3-none-any.whl
- Upload date:
- Size: 13.3 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4b8cd133230ef18851db7fb14a66339fcd8ae780680e1b5fdcd376f7dace681c |
|
MD5 | 8e8b4395ec57e106ea1d7878f9a56cd0 |
|
BLAKE2b-256 | 0a5a1023c4b090da1c14b072294b899f064204d5e56881951606a2a8c2f16655 |