Skip to main content

Python package for automated hyperparameter-optimization of common machine-learning algorithms

Project description

PyPI version

automl: Automated Machine Learning

Intro

automl is a python project focussed on automating much of the machine learning efforts encountered in zero-dimensional regression and classification (and thus not multidimensional data such as for a CNN). It relies on existing Python packages Sci-Kit Learn, Optuna and model specific packages LightGBM, CatBoost and XGBoost.

automl works by assessing the performance of various machine-learning models for a set number of trials over a pre-defined range of hyperparameters. During succesive trials the hyperparameters are optimized following a user-defined methodology (the default optimisation uses Bayesian search). Unpromising trials are stopped (pruned) early by assessing performance on an incrementally increasing fraction of training data, saving computational resources. Hyperparameter optimization trials are stored locally on disk, allowing the training to be picked up after interuption. The best trials of the defined models are reloaded and combined, or stacked, to form a final model. This final model is assessed and, due to the nature of stacking, tends to outperform any of its constituting models.

automl contains several additional functionalities beyond the hyperoptimization and stacking of models:

  • scaling of the input X-matrix (tested for on default)
  • normal transformation of the y-matrix (tested for on default)
  • PCA compression
  • spline transformation
  • polynomial expansion
  • categorical feature support (nominal and ordinal)
  • bagging of weak models in addition to optimized models
  • multithreading
  • feature-importance analyses with shap

Setup

Method 1: pip install

Create a new environment to prevent pip install from breaking anything. Include a Python version 3.11

conda create -n ENVNAME -c conda-forge python=3.11

Activate new environment

conda activate ENVNAME

Pip install

python3 -m pip install py-automl-lib

Optionally include the shap package for feature-importance analyses (see example_notebook.ipynb chapter 7.)

python3 -m pip install py-automl-lib[shap]

Method 2: cloning

Clone the repository

git clone https://github.com/owenodriscoll/AutoML

Navigate to the cloned local repository and create the conda environment with all requirement packages

conda env create --name ENVNAME --file environment.yml

Activate new environment

conda activate ENVNAME

Having created an environment with all dependencies, install AutoML:

pip install git+https://github.com/owenodriscoll/AutoML.git

Use

For a more detailed example checkout examples/example_notebook.ipynb

Minimal use case regression:

from sklearn.metrics import r2_score
from automl import AutomatedRegression

X, y = make_regression(n_samples=1000, n_features=10, n_informative=2, random_state=42)

regression = AutomatedRegression(
    y=y,
    X=X,
    n_trial=10,
    timeout=100
    metric_optimise=r2_score,
    optimisation_direction='maximize',
    models_to_optimize=['bayesianridge', 'lightgbm'],
    )
    
regression.apply()
regression.summary

Expanded options use case regression:

from optuna.samplers import TPESampler
from optuna.pruners import HyperbandPruner
from sklearn.metrics import r2_score
from sklearn.model_selection import KFold
from automl import AutomatedRegression

X, y = make_regression(n_samples=1000, n_features=10, n_informative=2, random_state=42)

# -- adding categorical features
df_X = pd.DataFrame(X)
df_X['nine'] = pd.cut(df_X[9], bins=[-float('Inf'), -3, -1, 1, 3, float('Inf')], labels=['a', 'b', 'c', 'd', 'e'])
df_X['ten'] = pd.cut(df_X[9], bins=[-float('Inf'), -1, 1, float('Inf')], labels=['A', 'B', 'C'])
df_y = pd.Series(y)

regression = AutomatedRegression(
    y=df_y,
    X=df_X,
    test_frac=0.2,
    fit_frac=[0.2, 0.4, 0.6, 1],
    n_trial=50,
    timeout=600,
    metric_optimise=r2_score,
    optimisation_direction='maximize',
    cross_validation=KFold(n_splits=5, shuffle=True, random_state=42),
    sampler=TPESampler(seed=random_state),
    pruner=HyperbandPruner(min_resource=1, max_resource='auto', reduction_factor=3),
    reload_study=False,
    reload_trial_cap=False,
    write_folder='/auto_regression_test',
    models_to_optimize=['bayesianridge', 'lightgbm'],
    nominal_columns=['nine'],
    ordinal_columns=['ten'],
    pca_value=0.95,
    spline_value={'n_knots': 5, 'degree':3},
    poly_value={'degree': 2, 'interaction_only': True},
    boosted_early_stopping_rounds=100,
    n_weak_models=5,
    random_state=42,
    )

regression.apply()
regression.summary
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py_automl_lib-2.2.2.tar.gz (26.3 kB view details)

Uploaded Source

Built Distribution

py_automl_lib-2.2.2-py3-none-any.whl (28.9 kB view details)

Uploaded Python 3

File details

Details for the file py_automl_lib-2.2.2.tar.gz.

File metadata

  • Download URL: py_automl_lib-2.2.2.tar.gz
  • Upload date:
  • Size: 26.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for py_automl_lib-2.2.2.tar.gz
Algorithm Hash digest
SHA256 8a273af485bc13ca94586b1986b1acdd467dbe7b7d37c8837b67f715bef3e027
MD5 8bb0af094f63814f971e8cad4da9942a
BLAKE2b-256 2239c7f8efe2978e52ed87d34a555f844d97537c8f048a2da2bf1b4f6860eb53

See more details on using hashes here.

File details

Details for the file py_automl_lib-2.2.2-py3-none-any.whl.

File metadata

  • Download URL: py_automl_lib-2.2.2-py3-none-any.whl
  • Upload date:
  • Size: 28.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for py_automl_lib-2.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6c4165ca54011249c8ac02981efd1bf2c2186ba53ed2a0c22721555d26dcf152
MD5 ebb5271f8cbb4f71c010f727a4e792cf
BLAKE2b-256 07f40cef5915c5d98fa778dacee48e3e25a4bf7173385dd1b3f51582a6da6199

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page