Skip to main content

Python Helpers Library

Project description

Python Helpers Library (No Black Box Definitions)

Ecosystem

⭐ Portal: https://bit.ly/finance_analytics
📊 Blog: https://slashpage.com/jh-analytics

📈 Softrader: https://pypi.org/project/softrader

🐍 Python: https://github.com/jhvissotto/Project_Finance_Api_Python
🐍 Pypi: https://pypi.org/project/jh-finance-api

🟦 TScript: https://github.com/jhvissotto/Project_Finance_Api_TScript
🟦 NPM: https://www.npmjs.com/package/finance-analytics-api

🧮 PyHelpers: https://github.com/jhvissotto/Library_Python_Helpers

🔌 Server: https://bit.ly/jh_finance_api
🔌 Swagger: https://bit.ly/jh_finance_api_swagger

Install

!pip install py-helpers-lib
from py_helpers_lib import *

System

HEADERS = { 'User-Agent':'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36', 'X-Requested-With':'XMLHttpRequest' }
def _pickle(CASES:Lit['COMPUTE','RELOAD','LOAD'], Lambda, dirs=[], name='', ext='.pkl', *a,**b):

    path    = os.path.join(*dirs, name + ext)
    EXISTS  = os.path.exists(path)

    def _calc():    return Lambda(*a,**b)
    def _read():    return joblib.load(path)
    def _save(X):   joblib.dump(X, path);  return X

    if (CASES == 'COMPUTE'):    return _calc()
    if (CASES == 'RELOAD'):     return _save(_calc())
    if (CASES == 'LOAD'):
        if     EXISTS:          return _read()
        if not EXISTS:          return _save(_calc())


def _parquet(CASES:Lit['COMPUTE','RELOAD','LOAD'], Lambda, dirs=[], name='', ext='.parquet', *a,**b):

    path    = os.path.join(*dirs, name + ext)
    EXISTS  = os.path.exists(path)

    def _calc():    return Lambda(*a,**b)
    def _read():    return pd.read_parquet(path)
    def _save(Df):  Df.to_parquet(path, index=False);  return Df

    if (CASES == 'COMPUTE'):    return _calc()
    if (CASES == 'RELOAD'):     return _save(_calc())
    if (CASES == 'LOAD'):
        if     EXISTS:          return _read()
        if not EXISTS:          return _save(_calc())

Casting

_to_bool()  -> (     bool    )
_as_bool()  -> (None|bool    )
_to_logic() -> (     bool|int)
_as_logic() -> (None|bool|int)
def _to_bool(x:None|bool|int|float|str, extend:bool): 

    if            str(x).lower() in ['true','1','1.0','t','y','yes']:   return True
    if            str(x).lower() in ['false','0','0.0','f','n','no']:   return False
    if extend and str(x).lower() in ['none','null','nan','']:           return False

    raise Exception('CASTING_BOOLEAN_FAILED')
def _as_bool(x:None|bool|int|float|str, extend:bool, undefine:bool): 

    if            str(x).lower() in ['true','1','1.0','t','y','yes']:   return True
    if            str(x).lower() in ['false','0','0.0','f','n','no']:   return False
    if extend and str(x).lower() in ['none','null','nan','']:           return False
    if undefine:                                                        return None

    raise Exception('CASTING_BOOLEAN_FAILED')
def _to_logic(x:None|bool|int|float|str, astype:Lit['bool','int'], extend:bool) -> (bool|int): 

    if            str(x).lower() in ['true','1','1.0','t','y','yes']:   return { 'bool':True,  'int':1 }[astype]
    if            str(x).lower() in ['false','0','0.0','f','n','no']:   return { 'bool':False, 'int':0 }[astype]
    if extend and str(x).lower() in ['none','null','nan','']:           return { 'bool':False, 'int':0 }[astype]

    raise Exception('CASTING_BOOLEAN_FAILED')
def _as_logic(x:None|bool|int|float|str, astype:Lit['bool','int'], extend:bool, undefine:bool) -> (None|bool|int): 

    if            str(x).lower() in ['true','1','1.0','t','y','yes']:   return { 'bool':True,  'int': 1 }[astype]
    if            str(x).lower() in ['false','0','0.0','f','n','no']:   return { 'bool':False, 'int': 0 }[astype]
    if extend and str(x).lower() in ['none','null','nan','']:           return { 'bool':False, 'int': 0 }[astype]
    if undefine:                                                        return { 'bool':None,  'int':-1 }[astype]

    raise Exception('CASTING_BOOLEAN_FAILED')

Text Functions

def _between(txt:str, A:str, Z:str):
    return txt.split(A)[1].split(Z)[0]


def _replaces(txt:str, args:List[Tuple[str, str]]):
    
    for (old, new) in args:
        txt = txt.replace(old, new)

    return txt

Math Formulas 1

def _step(X, stp=nan): 
    if isinstance(stp, int) and (stp < 0 or 1 < stp):
            return X[::stp]
    else:   return X

def _round(x, R=nan):
    if isinstance(R, int) and (R >= 0):
            return np.round(x, R)
    else:   return x
def _count(x):      return pd.Series(x).count()

def _sum(x):        return np.nansum(x)
def _prod(x):       return np.nanprod(x)

def _cumsum(x):     return np.nancumsum(x)
def _cumprod(x):    return np.nancumprod(x)

def _mean(x):       return np.nanmean(x)
def _std(x):        return np.nanstd(x)

def _gmean(x):      return exp(np.nanmean(log(x)))
def _gstd(x):       return exp(np.nanstd(log(x)))

def _med(x):        return np.nanmedian(x)
def _mad(x):        return sp_stats.median_abs_deviation(x, nan_policy='omit')

def _max(x):        return np.nanmax(x)
def _min(x):        return np.nanmin(x)

def _Q3(x):         return np.nanpercentile(x, 75)
def _Q1(x):         return np.nanpercentile(x, 25)

def _pct_prod(x):     return    _prod(1+x/100)
def _pct_cumprod(x):  return _cumprod(1+x/100)
def _pct_gmean(x):    return   _gmean(1+x/100)*100-100
def _pct_gstd(x):     return    _gstd(1+x/100)*100-100
def _range(Max, Min):               return (Max - Min)
def _IQR(Q3, Q1):                   return (Q3 - Q1)

def _minmax(Val, Min, Range):       return (Val - Min) / Range *100
def _robust(val, med, IQR):         return (val - med) / IQR   *100

def _zscore(val, avg, dev):         return (val - avg) / dev
def _pscore(val, series):           return sp_stats.percentileofscore(series, val, 'mean', 'omit')

def _log1p_zscore(val, avg, dev):   return (log(1+val/100) - log(1+avg/100)) / log(1+dev/100)

Math Formulas 2

def _groupby(Df, By=''):
    if By:  return Df.groupby(By, sort=0, group_keys=0, dropna=0)
    else:   return Df

def _apply(Df,      Lambda,            By='', stp=nan, R=nan):  return _round(_groupby(_step(Df, stp), By)                        .apply(Lambda),                       R)
def   _cum(Df, Col, Lambda,            By='', stp=nan, R=nan):  return _round(_groupby(_step(Df, stp), By)[Col].expanding()       .apply(Lambda).reset_index(0,drop=1), R)
def  _roll(Df, Col, Lambda, win, wmin, By='', stp=nan, R=nan):  return _round(_groupby(_step(Df, stp), By)[Col].rolling(win, wmin).apply(Lambda).reset_index(0,drop=1), R)
def      _shift(Df, Col, P,   By=''                          ):  return        _groupby(      Df,       By)[Col]      .shift(P)
def       _diff(Df, Col, P=1, By='',           stp=nan, R=nan):  return _round(_groupby(_step(Df, stp), By)[Col]       .diff(P),           R)
def _pct_change(Df, Col, P=1, By='', base=100, stp=nan, R=nan):  return _round(_groupby(_step(Df, stp), By)[Col] .pct_change(P).mul(base), R)
def _cum_count      (Df, Col,            By=''                 ):  return  _cum(Df, Col, _count,                By)
def _cum_pct_prod   (Df, Col,            By=''                 ):  return  _cum(Df, Col, _pct_prod,             By)

def _roll_mean      (Df, Col, win, wmin, By='', stp=nan, R=nan):   return _roll(Df, Col, _mean,      win, wmin, By, stp, R)
def _roll_std       (Df, Col, win, wmin, By='', stp=nan, R=nan):   return _roll(Df, Col, _std,       win, wmin, By, stp, R)

def _roll_gmean     (Df, Col, win, wmin, By='', stp=nan, R=nan):   return _roll(Df, Col, _gmean,     win, wmin, By, stp, R)
def _roll_gstd      (Df, Col, win, wmin, By='', stp=nan, R=nan):   return _roll(Df, Col, _gstd,      win, wmin, By, stp, R)

def _roll_pct_gmean (Df, Col, win, wmin, By='', stp=nan, R=nan):   return _roll(Df, Col, _pct_gmean, win, wmin, By, stp, R)
def _roll_pct_gstd  (Df, Col, win, wmin, By='', stp=nan, R=nan):   return _roll(Df, Col, _pct_gstd,  win, wmin, By, stp, R)

def _roll_med       (Df, Col, win, wmin, By='', stp=nan, R=nan):   return _roll(Df, Col, _med,       win, wmin, By, stp, R)
def _roll_mad       (Df, Col, win, wmin, By='', stp=nan, R=nan):   return _roll(Df, Col, _mad,       win, wmin, By, stp, R)

def _roll_max       (Df, Col, win, wmin, By='', stp=nan, R=nan):   return _roll(Df, Col, _max,       win, wmin, By, stp, R)
def _roll_min       (Df, Col, win, wmin, By='', stp=nan, R=nan):   return _roll(Df, Col, _min,       win, wmin, By, stp, R)

def _roll_Q3        (Df, Col, win, wmin, By='', stp=nan, R=nan):   return _roll(Df, Col, _Q3,        win, wmin, By, stp, R)
def _roll_Q1        (Df, Col, win, wmin, By='', stp=nan, R=nan):   return _roll(Df, Col, _Q1,        win, wmin, By, stp, R)

def _roll_range     (Df, Col, win, wmin, By='', stp=nan, R=nan):   return _round(_range(Max=_roll_max(Df, Col, win, wmin, By, stp), Min=_roll_min(Df, Col, win, wmin, By, stp)), R)
def _roll_iqr       (Df, Col, win, wmin, By='', stp=nan, R=nan):   return _round(  _IQR( Q3= _roll_Q3(Df, Col, win, wmin, By, stp),  Q1= _roll_Q1(Df, Col, win, wmin, By, stp)), R)
def _roll_minmax     (Df, Col, win, wmin, By='', stp=nan, R=nan):  return _round(      _minmax(Val=Df[Col],  Min=      _roll_min(Df, Col, win, wmin, By, stp),  Range= _roll_range(Df, Col, win, wmin, By, stp)), R)
def _roll_robust     (Df, Col, win, wmin, By='', stp=nan, R=nan):  return _round(      _robust(val=Df[Col],  med=      _roll_med(Df, Col, win, wmin, By, stp),  IQR=     _roll_iqr(Df, Col, win, wmin, By, stp)), R)
def _roll_zscore     (Df, Col, win, wmin, By='', stp=nan, R=nan):  return _round(      _zscore(val=Df[Col],  avg=     _roll_mean(Df, Col, win, wmin, By, stp),  dev=     _roll_std(Df, Col, win, wmin, By, stp)), R)
def _roll_pct_gscore (Df, Col, win, wmin, By='', stp=nan, R=nan):  return _round(_log1p_zscore(val=Df[Col],  avg=_roll_pct_gmean(Df, Col, win, wmin, By, stp),  dev=_roll_pct_gstd(Df, Col, win, wmin, By, stp)), R)

def _roll_pscore     (Df, Col, win, wmin, By='', stp=nan, R=nan):  return _roll(Df, Col, lambda X: _pscore(val=X.tail(1), series=X), win, wmin, By, stp, R)

Pandas Dataframe

def _columns(Df, A, Z): 
    return Df.loc[:, A:Z].columns

def _insert(Df, idx, Col, Val):
    if Col in Df:   Df[Col] = Val
    else:           Df.insert(idx, Col, Val)

def _get_group(Df, Get, By):
    return _groupby(Df, By).get_group(Get) .reset_index(0,drop=1)
def _rank      (Df, Col, By, method='dense', ascending=True): return _groupby(Df, By)[Col].rank(method,  ascending)
def _rank_high (Df, Col, By, method='dense'):                 return _groupby(Df, By)[Col].rank(method, False)
def _rank_low  (Df, Col, By, method='dense'):                 return _groupby(Df, By)[Col].rank(method,  True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py_helpers_lib-0.1.19.tar.gz (5.6 kB view details)

Uploaded Source

Built Distribution

py_helpers_lib-0.1.19-py3-none-any.whl (8.9 kB view details)

Uploaded Python 3

File details

Details for the file py_helpers_lib-0.1.19.tar.gz.

File metadata

  • Download URL: py_helpers_lib-0.1.19.tar.gz
  • Upload date:
  • Size: 5.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.2 CPython/3.13.3 Windows/10

File hashes

Hashes for py_helpers_lib-0.1.19.tar.gz
Algorithm Hash digest
SHA256 af338d48118e23349c85a139e064288aad9b8f51ce75a76706b77b1b7b2a0f94
MD5 552c142b5685292c2d4326ac73dc4f19
BLAKE2b-256 0323adfd6694d99f6fbae11b0945027ff0122483ff0c1eb4acacdc52bf5ebf46

See more details on using hashes here.

File details

Details for the file py_helpers_lib-0.1.19-py3-none-any.whl.

File metadata

  • Download URL: py_helpers_lib-0.1.19-py3-none-any.whl
  • Upload date:
  • Size: 8.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.2 CPython/3.13.3 Windows/10

File hashes

Hashes for py_helpers_lib-0.1.19-py3-none-any.whl
Algorithm Hash digest
SHA256 eb67d9fef31fe9a5b4ba0ba93b5660a0c45fa41f609c05056c90a2445e6cb741
MD5 9464c8bca4e8290644b632a5bb49f9db
BLAKE2b-256 918cc707100416975b79126318a5769de8834ae05ea06462b370b172f5c44654

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page