Python Helpers Library
Project description
Python Helpers Library (No Black Box Definitions)
Ecosystem
⭐ Portal: https://bit.ly/finance_analytics
📊 Blog: https://slashpage.com/jh-analytics
📈 Softrader: https://pypi.org/project/softrader
🐍 Python: https://github.com/jhvissotto/Project_Finance_Api_Python
🐍 Pypi: https://pypi.org/project/jh-finance-api
🟦 TScript: https://github.com/jhvissotto/Project_Finance_Api_TScript
🟦 NPM: https://www.npmjs.com/package/finance-analytics-api
🧮 PyHelpers: https://github.com/jhvissotto/Library_Python_Helpers
🔌 Server: https://bit.ly/jh_finance_api
🔌 Swagger: https://bit.ly/jh_finance_api_swagger
Install
!pip install py-helpers-lib
from py_helpers_lib import *
System
HEADERS = { 'User-Agent':'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36', 'X-Requested-With':'XMLHttpRequest' }
def _pickle(CASES:Lit['COMPUTE','RELOAD','LOAD'], Lambda, dirs=[], name='', ext='.pkl', *a,**b):
path = os.path.join(*dirs, name + ext)
EXISTS = os.path.exists(path)
def _calc(): return Lambda(*a,**b)
def _read(): return joblib.load(path)
def _save(X): joblib.dump(X, path); return X
if (CASES == 'COMPUTE'): return _calc()
if (CASES == 'RELOAD'): return _save(_calc())
if (CASES == 'LOAD'):
if EXISTS: return _read()
if not EXISTS: return _save(_calc())
def _parquet(CASES:Lit['COMPUTE','RELOAD','LOAD'], Lambda, dirs=[], name='', ext='.parquet', *a,**b):
path = os.path.join(*dirs, name + ext)
EXISTS = os.path.exists(path)
def _calc(): return Lambda(*a,**b)
def _read(): return pd.read_parquet(path)
def _save(Df): Df.to_parquet(path, index=False); return Df
if (CASES == 'COMPUTE'): return _calc()
if (CASES == 'RELOAD'): return _save(_calc())
if (CASES == 'LOAD'):
if EXISTS: return _read()
if not EXISTS: return _save(_calc())
Casting
_to_bool() -> ( bool )
_as_bool() -> (None|bool )
_to_logic() -> ( bool|int)
_as_logic() -> (None|bool|int)
def _to_bool(x:None|bool|int|float|str, extend:bool):
if str(x).lower() in ['true','1','1.0','t','y','yes']: return True
if str(x).lower() in ['false','0','0.0','f','n','no']: return False
if extend and str(x).lower() in ['none','null','nan','']: return False
raise Exception('CASTING_BOOLEAN_FAILED')
def _as_bool(x:None|bool|int|float|str, extend:bool, undefine:bool):
if str(x).lower() in ['true','1','1.0','t','y','yes']: return True
if str(x).lower() in ['false','0','0.0','f','n','no']: return False
if extend and str(x).lower() in ['none','null','nan','']: return False
if undefine: return None
raise Exception('CASTING_BOOLEAN_FAILED')
def _to_logic(x:None|bool|int|float|str, astype:Lit['bool','int'], extend:bool) -> (bool|int):
if str(x).lower() in ['true','1','1.0','t','y','yes']: return { 'bool':True, 'int':1 }[astype]
if str(x).lower() in ['false','0','0.0','f','n','no']: return { 'bool':False, 'int':0 }[astype]
if extend and str(x).lower() in ['none','null','nan','']: return { 'bool':False, 'int':0 }[astype]
raise Exception('CASTING_BOOLEAN_FAILED')
def _as_logic(x:None|bool|int|float|str, astype:Lit['bool','int'], extend:bool, undefine:bool) -> (None|bool|int):
if str(x).lower() in ['true','1','1.0','t','y','yes']: return { 'bool':True, 'int': 1 }[astype]
if str(x).lower() in ['false','0','0.0','f','n','no']: return { 'bool':False, 'int': 0 }[astype]
if extend and str(x).lower() in ['none','null','nan','']: return { 'bool':False, 'int': 0 }[astype]
if undefine: return { 'bool':None, 'int':-1 }[astype]
raise Exception('CASTING_BOOLEAN_FAILED')
Text Functions
def _between(txt:str, A:str, Z:str):
return txt.split(A)[1].split(Z)[0]
def _replaces(txt:str, args:List[Tuple[str, str]]):
for (old, new) in args:
txt = txt.replace(old, new)
return txt
Math Formulas 1
def _step(X, stp=nan):
if isinstance(stp, int) and (stp < 0 or 1 < stp):
return X[::stp]
else: return X
def _round(x, R=nan):
if isinstance(R, int) and (R >= 0):
return np.round(x, R)
else: return x
def _count(x): return pd.Series(x).count()
def _sum(x): return np.nansum(x)
def _prod(x): return np.nanprod(x)
def _cumsum(x): return np.nancumsum(x)
def _cumprod(x): return np.nancumprod(x)
def _mean(x): return np.nanmean(x)
def _std(x): return np.nanstd(x)
def _gmean(x): return exp(np.nanmean(log(x)))
def _gstd(x): return exp(np.nanstd(log(x)))
def _med(x): return np.nanmedian(x)
def _mad(x): return sp_stats.median_abs_deviation(x, nan_policy='omit')
def _max(x): return np.nanmax(x)
def _min(x): return np.nanmin(x)
def _Q3(x): return np.nanpercentile(x, 75)
def _Q1(x): return np.nanpercentile(x, 25)
def _pct_prod(x): return _prod(1+x/100)
def _pct_cumprod(x): return _cumprod(1+x/100)
def _pct_gmean(x): return _gmean(1+x/100)*100-100
def _pct_gstd(x): return _gstd(1+x/100)*100-100
def _range(Max, Min): return (Max - Min)
def _IQR(Q3, Q1): return (Q3 - Q1)
def _minmax(Val, Min, Range): return (Val - Min) / Range *100
def _robust(val, med, IQR): return (val - med) / IQR *100
def _zscore(val, avg, dev): return (val - avg) / dev
def _pscore(val, series): return sp_stats.percentileofscore(series, val, 'mean', 'omit')
def _log1p_zscore(val, avg, dev): return (log(1+val/100) - log(1+avg/100)) / log(1+dev/100)
Math Formulas 2
def _groupby(Df, By=''):
if By: return Df.groupby(By, sort=0, group_keys=0, dropna=0)
else: return Df
def _apply(Df, Lambda, By='', stp=nan, R=nan): return _round(_groupby(_step(Df, stp), By) .apply(Lambda), R)
def _cum(Df, Col, Lambda, By='', stp=nan, R=nan): return _round(_groupby(_step(Df, stp), By)[Col].expanding() .apply(Lambda).reset_index(0,drop=1), R)
def _roll(Df, Col, Lambda, win, wmin, By='', stp=nan, R=nan): return _round(_groupby(_step(Df, stp), By)[Col].rolling(win, wmin).apply(Lambda).reset_index(0,drop=1), R)
def _shift(Df, Col, P, By='' ): return _groupby( Df, By)[Col] .shift(P)
def _diff(Df, Col, P=1, By='', stp=nan, R=nan): return _round(_groupby(_step(Df, stp), By)[Col] .diff(P), R)
def _pct_change(Df, Col, P=1, By='', base=100, stp=nan, R=nan): return _round(_groupby(_step(Df, stp), By)[Col] .pct_change(P).mul(base), R)
def _cum_count (Df, Col, By='' ): return _cum(Df, Col, _count, By)
def _cum_pct_prod (Df, Col, By='' ): return _cum(Df, Col, _pct_prod, By)
def _roll_mean (Df, Col, win, wmin, By='', stp=nan, R=nan): return _roll(Df, Col, _mean, win, wmin, By, stp, R)
def _roll_std (Df, Col, win, wmin, By='', stp=nan, R=nan): return _roll(Df, Col, _std, win, wmin, By, stp, R)
def _roll_gmean (Df, Col, win, wmin, By='', stp=nan, R=nan): return _roll(Df, Col, _gmean, win, wmin, By, stp, R)
def _roll_gstd (Df, Col, win, wmin, By='', stp=nan, R=nan): return _roll(Df, Col, _gstd, win, wmin, By, stp, R)
def _roll_pct_gmean (Df, Col, win, wmin, By='', stp=nan, R=nan): return _roll(Df, Col, _pct_gmean, win, wmin, By, stp, R)
def _roll_pct_gstd (Df, Col, win, wmin, By='', stp=nan, R=nan): return _roll(Df, Col, _pct_gstd, win, wmin, By, stp, R)
def _roll_med (Df, Col, win, wmin, By='', stp=nan, R=nan): return _roll(Df, Col, _med, win, wmin, By, stp, R)
def _roll_mad (Df, Col, win, wmin, By='', stp=nan, R=nan): return _roll(Df, Col, _mad, win, wmin, By, stp, R)
def _roll_max (Df, Col, win, wmin, By='', stp=nan, R=nan): return _roll(Df, Col, _max, win, wmin, By, stp, R)
def _roll_min (Df, Col, win, wmin, By='', stp=nan, R=nan): return _roll(Df, Col, _min, win, wmin, By, stp, R)
def _roll_Q3 (Df, Col, win, wmin, By='', stp=nan, R=nan): return _roll(Df, Col, _Q3, win, wmin, By, stp, R)
def _roll_Q1 (Df, Col, win, wmin, By='', stp=nan, R=nan): return _roll(Df, Col, _Q1, win, wmin, By, stp, R)
def _roll_range (Df, Col, win, wmin, By='', stp=nan, R=nan): return _round(_range(Max=_roll_max(Df, Col, win, wmin, By, stp), Min=_roll_min(Df, Col, win, wmin, By, stp)), R)
def _roll_iqr (Df, Col, win, wmin, By='', stp=nan, R=nan): return _round( _IQR( Q3= _roll_Q3(Df, Col, win, wmin, By, stp), Q1= _roll_Q1(Df, Col, win, wmin, By, stp)), R)
def _roll_minmax (Df, Col, win, wmin, By='', stp=nan, R=nan): return _round( _minmax(Val=Df[Col], Min= _roll_min(Df, Col, win, wmin, By, stp), Range= _roll_range(Df, Col, win, wmin, By, stp)), R)
def _roll_robust (Df, Col, win, wmin, By='', stp=nan, R=nan): return _round( _robust(val=Df[Col], med= _roll_med(Df, Col, win, wmin, By, stp), IQR= _roll_iqr(Df, Col, win, wmin, By, stp)), R)
def _roll_zscore (Df, Col, win, wmin, By='', stp=nan, R=nan): return _round( _zscore(val=Df[Col], avg= _roll_mean(Df, Col, win, wmin, By, stp), dev= _roll_std(Df, Col, win, wmin, By, stp)), R)
def _roll_pct_gscore (Df, Col, win, wmin, By='', stp=nan, R=nan): return _round(_log1p_zscore(val=Df[Col], avg=_roll_pct_gmean(Df, Col, win, wmin, By, stp), dev=_roll_pct_gstd(Df, Col, win, wmin, By, stp)), R)
def _roll_pscore (Df, Col, win, wmin, By='', stp=nan, R=nan): return _roll(Df, Col, lambda X: _pscore(val=X.tail(1), series=X), win, wmin, By, stp, R)
Pandas Dataframe
def _columns(Df, A, Z):
return Df.loc[:, A:Z].columns
def _insert(Df, idx, Col, Val):
if Col in Df: Df[Col] = Val
else: Df.insert(idx, Col, Val)
def _get_group(Df, Get, By):
return _groupby(Df, By).get_group(Get) .reset_index(0,drop=1)
def _rank (Df, Col, By, method='dense', ascending=True): return _groupby(Df, By)[Col].rank(method, ascending)
def _rank_high (Df, Col, By, method='dense'): return _groupby(Df, By)[Col].rank(method, False)
def _rank_low (Df, Col, By, method='dense'): return _groupby(Df, By)[Col].rank(method, True)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file py_helpers_lib-0.1.19.tar.gz
.
File metadata
- Download URL: py_helpers_lib-0.1.19.tar.gz
- Upload date:
- Size: 5.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/2.1.2 CPython/3.13.3 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
af338d48118e23349c85a139e064288aad9b8f51ce75a76706b77b1b7b2a0f94
|
|
MD5 |
552c142b5685292c2d4326ac73dc4f19
|
|
BLAKE2b-256 |
0323adfd6694d99f6fbae11b0945027ff0122483ff0c1eb4acacdc52bf5ebf46
|
File details
Details for the file py_helpers_lib-0.1.19-py3-none-any.whl
.
File metadata
- Download URL: py_helpers_lib-0.1.19-py3-none-any.whl
- Upload date:
- Size: 8.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/2.1.2 CPython/3.13.3 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
eb67d9fef31fe9a5b4ba0ba93b5660a0c45fa41f609c05056c90a2445e6cb741
|
|
MD5 |
9464c8bca4e8290644b632a5bb49f9db
|
|
BLAKE2b-256 |
918cc707100416975b79126318a5769de8834ae05ea06462b370b172f5c44654
|