Skip to main content

HyperPy: An automatic hyperparameter optimization framework

Project description

hyperpy

HyperPy: An automatic hyperparameter optimization framework

PyPI - Status GitHub top language GitHub PyPI - Python Version PyPI - Wheel

Description

contributions welcome

Library for automatic hyperparameter optimization. Build on top of Optuna to perform hyperparameter optimization with low code.

This library corresponds to part of the work of Sergio A. Mora Pardo

👶 Our current version: PyPI version

Installation

GitHub Release Date GitHub last commit

You can install py-hyperpy with pip:

# pip install hyperpy

Example

Import the library:

import hyperpy.core as hy
from hyperpy.util import ExampleConfig # Just for example

Reading data:

data=ExampleConfig()
train, test, sub = data.readData()

Extract features:

feat_X = train.filter(['Pclass','Age', 'SibSp', 'Parch','Fare']).values
Y = train.Survived.values

Run the optimization:

running=hy.run(feat_X, Y)
study = running.buildStudy()

See the results:

print("best params: ", study.best_params)
print("best test accuracy: ", study.best_value)
best_params, best_value = hy.results.results(study)

NOTE best test accuracy -> 'Adam': 0.7407407164573669

Documentation

Documentation is available at hyperpy

Working on tutorial, meanwhile explore documentation.

Development GitHub issues GitHub issues

Source code is available at https://github.com/sergiomora03/hyperpy

https://packaging.python.org/tutorials/creating-documentation/

Welcome, I've been expecting you.

Contact

<script src="//cdn.jsdelivr.net/github-cards/latest/widget.js"></script>

Buy Me A Coffee

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py-hyperpy-0.0.1.tar.gz (3.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

py_hyperpy-0.0.1-py3-none-any.whl (3.3 kB view details)

Uploaded Python 3

File details

Details for the file py-hyperpy-0.0.1.tar.gz.

File metadata

  • Download URL: py-hyperpy-0.0.1.tar.gz
  • Upload date:
  • Size: 3.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.6.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for py-hyperpy-0.0.1.tar.gz
Algorithm Hash digest
SHA256 0600fba39e769b204f59eaedeefd98ec13adbed8afec7ca9f9666e7d2a9fdb38
MD5 b4604814caf132d42eb31d3de4cffd15
BLAKE2b-256 811bf1298a9069e3977e8263c9db2df11070981ef1c655c80b49a17fe6958f73

See more details on using hashes here.

File details

Details for the file py_hyperpy-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: py_hyperpy-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 3.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.6.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for py_hyperpy-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 044b26d0345d808a031dd5fcf0125e8120de35940ec53cbd2a17edf20e83d412
MD5 a523d29fc43d21ddb4d9f43656901699
BLAKE2b-256 d5219821600d6b1f90d8e92e933a087224d2c3a939fc3b1686ad4039c5e4f081

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page