Skip to main content

A Interval Tree Library

Project description

🌳 iTree - an Interval Tree library

itree

In computer science, an interval tree is a tree data structure to hold intervals. Every node in itree has a start and an end value.

Installation

itree supports Linux, MacOS and Windows operating systems.

You can install itree by running:

  pip install py-itree

🍀 For MacOS with M1 Chip, some Windows OS, embedded systems, or different python versions where the method above doesn't work, please use the following workaround.

  • install cmake
  • run the following command to build it locally:
pip install https://github.com/juncongmoo/itree/archive/refs/tags/tag-bf9f3aada064acf3ce4db6fc58ed2e744caee0a3.tar.gz

Quick Start

  • Symbol For Node And Tree
  🟢  - normal node; 
  🔵  - zero interval node; 
  🍁  - leaf node, which means no child node
  🌳  - a tree
  • Create Some Nodes
  >>> import itree
  >>> itree.Node('fruit', 0, 40)
  [🍁 n=fruit,s=0.00,e=40.00,x=0,c=0]
  >>> itree.Node('fruit')
  [🔵 n=fruit]
  >>> a=itree.Node('fruit', 0, 200)
  >>> b=itree.Node('apple', 10, 20)
  >>> print(a)
  [🍁 n=fruit,s=0.00,e=40.00,x=0,c=0]
  >>> a.append(b)
  >>> print(a)
  [🟢 n=fruit,s=0.00,e=200.00,x=0,c=1]
  >>> print(b)
  [🍁 n=apple,s=10.00,e=20.00,x=0,c=0]
  >>> print(a.nodes)
  [[🍁 n=apple,s=10.00,e=20.00,x=0,c=0]]
  >>> 
  • Create And Render A Tree
  >>> from itree import Tree
  >>> def demo_tree():
        t = Tree(tid="123", extra={"img": "1241241313.png"})
        t.start("root", 1, {"name": "itree"})
        t.start("math", 2, {"age": 10})
        t.start("music", 3, {"location": [1, 2, 3]})
        t.end("music", 4, {"price": 12.3})
        t.end("math", 16284000, {"memory": (1, 2, 3)})
        t.start("music", 122840057.8713503)
        t.end("music", 1228400500)
        t.start("music", 32840057.8713503)
        t.start("egg", 3284.8713503)
        t.start("icecream", 32843.8713503)
        t.start("pizza", 32843.8713503)
        t.end("pizza", 62845003)
        t.end("icecream", 62845003)
        t.end("egg", 6284500)
        t.end("music", 628400500)
        t.start("piggy", 3284.8713503)
        t.start("unicorn", 32843.8713503)
        t.start("monkey", 32843.8713503)
        t.end("monkey", 62845003)
        t.end("unicorn", 62845003)
        t.end("piggy", 6284500)
        t.end("root", 1628400570.8713503)
        print(f"{t.count},{t.depth}")
        t.consolidate()
        img_path = t.to_img()
        return img_path, t
  >>> img_path, t = demo_tree()
  >>> t
  (🌳 id=123,c=11,x=1,d=6,m=0,o=1)

Run the demo_tree() function, a tree digraph will be generated:

demo_tree

The green circle node is a virtual node. The yellow record box is the node with the longest interval.

A virtual node is a conceptual node which could have many subnodes/subtrees.

vnode

Development

Turn on local build to ON in itree/CMakeLists.txt:

option(LOCAL_BUILD "build locally" OFF)
  • Test
$python -m unittest discover
...............
----------------------------------------------------------------------
Ran 15 tests in 1.209s

OK
  • Format
find itree -path itree/pybind11 -prune -o -iname *.h -o -iname *.cpp | xargs clang-format -i
black -S . --exclude '(\.history|\.vscode|\.git|\.VSCodeCounter|venv|workspace|pybind11)'
  • Build
rm -fr itree/build/ && ./release.sh && yes | cp itree/build/_itree.* itree/
pip install --editable .

License

Tree is licensed under the Apache 2.0 License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

py_itree-0.0.18-pp39-pypy39_pp73-win_amd64.whl (410.9 kB view details)

Uploaded PyPy Windows x86-64

py_itree-0.0.18-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (238.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

py_itree-0.0.18-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (252.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

py_itree-0.0.18-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (223.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

py_itree-0.0.18-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (189.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

py_itree-0.0.18-pp38-pypy38_pp73-win_amd64.whl (411.0 kB view details)

Uploaded PyPy Windows x86-64

py_itree-0.0.18-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (239.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

py_itree-0.0.18-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (252.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

py_itree-0.0.18-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (223.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

py_itree-0.0.18-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (189.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

py_itree-0.0.18-pp37-pypy37_pp73-win_amd64.whl (410.9 kB view details)

Uploaded PyPy Windows x86-64

py_itree-0.0.18-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (239.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

py_itree-0.0.18-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (253.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

py_itree-0.0.18-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (223.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

py_itree-0.0.18-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (188.9 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

py_itree-0.0.18-cp311-cp311-win_amd64.whl (412.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

py_itree-0.0.18-cp311-cp311-win32.whl (412.2 kB view details)

Uploaded CPython 3.11 Windows x86

py_itree-0.0.18-cp311-cp311-musllinux_1_1_x86_64.whl (752.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

py_itree-0.0.18-cp311-cp311-musllinux_1_1_i686.whl (819.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

py_itree-0.0.18-cp311-cp311-musllinux_1_1_aarch64.whl (728.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

py_itree-0.0.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (242.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

py_itree-0.0.18-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (255.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

py_itree-0.0.18-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (227.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

py_itree-0.0.18-cp311-cp311-macosx_11_0_arm64.whl (191.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

py_itree-0.0.18-cp311-cp311-macosx_10_9_x86_64.whl (191.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

py_itree-0.0.18-cp311-cp311-macosx_10_9_universal2.whl (191.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

py_itree-0.0.18-cp310-cp310-win_amd64.whl (411.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

py_itree-0.0.18-cp310-cp310-win32.whl (411.8 kB view details)

Uploaded CPython 3.10 Windows x86

py_itree-0.0.18-cp310-cp310-musllinux_1_1_x86_64.whl (752.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

py_itree-0.0.18-cp310-cp310-musllinux_1_1_i686.whl (819.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

py_itree-0.0.18-cp310-cp310-musllinux_1_1_aarch64.whl (727.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

py_itree-0.0.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (242.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

py_itree-0.0.18-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (256.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

py_itree-0.0.18-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (227.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

py_itree-0.0.18-cp310-cp310-macosx_11_0_arm64.whl (191.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

py_itree-0.0.18-cp310-cp310-macosx_10_9_x86_64.whl (191.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

py_itree-0.0.18-cp310-cp310-macosx_10_9_universal2.whl (191.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

py_itree-0.0.18-cp39-cp39-win_amd64.whl (412.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

py_itree-0.0.18-cp39-cp39-win32.whl (411.9 kB view details)

Uploaded CPython 3.9 Windows x86

py_itree-0.0.18-cp39-cp39-musllinux_1_1_x86_64.whl (752.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

py_itree-0.0.18-cp39-cp39-musllinux_1_1_i686.whl (819.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

py_itree-0.0.18-cp39-cp39-musllinux_1_1_aarch64.whl (728.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

py_itree-0.0.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (242.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

py_itree-0.0.18-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (256.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

py_itree-0.0.18-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (227.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

py_itree-0.0.18-cp39-cp39-macosx_11_0_arm64.whl (191.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

py_itree-0.0.18-cp39-cp39-macosx_10_9_x86_64.whl (191.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

py_itree-0.0.18-cp39-cp39-macosx_10_9_universal2.whl (191.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

py_itree-0.0.18-cp38-cp38-win_amd64.whl (411.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

py_itree-0.0.18-cp38-cp38-win32.whl (411.6 kB view details)

Uploaded CPython 3.8 Windows x86

py_itree-0.0.18-cp38-cp38-musllinux_1_1_x86_64.whl (752.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

py_itree-0.0.18-cp38-cp38-musllinux_1_1_i686.whl (819.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

py_itree-0.0.18-cp38-cp38-musllinux_1_1_aarch64.whl (727.7 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

py_itree-0.0.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (242.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

py_itree-0.0.18-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (255.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

py_itree-0.0.18-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (227.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

py_itree-0.0.18-cp38-cp38-macosx_11_0_arm64.whl (191.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

py_itree-0.0.18-cp38-cp38-macosx_10_9_x86_64.whl (191.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

py_itree-0.0.18-cp38-cp38-macosx_10_9_universal2.whl (191.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

py_itree-0.0.18-cp37-cp37m-win_amd64.whl (410.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

py_itree-0.0.18-cp37-cp37m-win32.whl (410.2 kB view details)

Uploaded CPython 3.7m Windows x86

py_itree-0.0.18-cp37-cp37m-musllinux_1_1_x86_64.whl (756.9 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

py_itree-0.0.18-cp37-cp37m-musllinux_1_1_i686.whl (823.9 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

py_itree-0.0.18-cp37-cp37m-musllinux_1_1_aarch64.whl (734.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

py_itree-0.0.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (245.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

py_itree-0.0.18-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (261.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

py_itree-0.0.18-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (229.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

py_itree-0.0.18-cp37-cp37m-macosx_10_9_x86_64.whl (188.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

py_itree-0.0.18-cp36-cp36m-win_amd64.whl (410.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

py_itree-0.0.18-cp36-cp36m-win32.whl (409.9 kB view details)

Uploaded CPython 3.6m Windows x86

py_itree-0.0.18-cp36-cp36m-musllinux_1_1_x86_64.whl (756.9 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

py_itree-0.0.18-cp36-cp36m-musllinux_1_1_i686.whl (824.7 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

py_itree-0.0.18-cp36-cp36m-musllinux_1_1_aarch64.whl (734.5 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

py_itree-0.0.18-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (245.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

py_itree-0.0.18-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (260.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

py_itree-0.0.18-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (230.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

py_itree-0.0.18-cp36-cp36m-macosx_10_9_x86_64.whl (188.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file py_itree-0.0.18-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 55faa5c35301af7fb2268cd649de4e6b12f5f40d064859e9372718de242e2997
MD5 c358193447e5280f80c7d604079af513
BLAKE2b-256 399556b06f79334365301a8da210177750cd11aab9af74e5641b8184ce6511fd

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb710e3890bf544c2fecdebf9f04115255c9ca8aaad4a233d7f8708dc7b7a5b6
MD5 c79b5dc0bc72c0f16f2c3291dd13e18b
BLAKE2b-256 1b258e2fae64080a658667a9cd895004dc646880c298a43a9423e377d739a785

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 31f83dadda264044bb14ae666b1240c0a5b2a12a92813a7cc4227b9c300bbfdb
MD5 5290ba843e09238d3243bae6d220dad1
BLAKE2b-256 2d54f32bc7a08ef888c3868398cdaff3d602ccc3b0daa7a0e33c18e65a6b7298

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9c9fe97c76ca08eb9a23da0d16ccd0fe40ef2647fdf9da9f28c3d0f1f29db6db
MD5 b9a6d99650e8e73e7a8f29f196b2f2c9
BLAKE2b-256 2ad18b4fa9514b4ba73799ce0e9eb735b0d41d5f05002325c43c93a253534b8d

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 180d21f12aab58b915b1474000b660efdf91c662b2c0f35a245a4820036a8e28
MD5 4dc02ab08b87176748d6505318f3f341
BLAKE2b-256 2663a724f6f0be141c184f2d017b55cfc327fb204834f4e6c92d55c4cb31a3a8

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4d98518e7cf21c6a916b33c7d40273564d9add010e5303d77122a083411efb8e
MD5 5f0deaa4a516f7e05b13cc456b393ae8
BLAKE2b-256 aaf04a63f788f1ed772a7c2f708dad15b0d4522b5cde247285c75542d7cf527a

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2a8afcb11cdbdc91f4bccfcc1c668a881931003313377f20d8d7cb6c3087917e
MD5 af4b83eaf4abf04648ede790fffb82d2
BLAKE2b-256 ee1711d08a54b0d466a2b9cb60fd9975c3fb7fb6c693a41a271becb8b91be9a1

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 55045193634cdc8beb478fc5e42de8525420a2518509e56d90853773a9335469
MD5 2a12a77e7b60560e6bd626969fd7259f
BLAKE2b-256 4fb9f3f2eeec8b98182b066ce55574bccde3fed80bbe5f22cf2afdc1bde00d9a

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d04d6697e724a56a7bafd0ac0c74d8f9f0cd2bd6b4eb364cc353e11ecbd4141
MD5 14ccbfabf2d1fd9579936e57a3e51020
BLAKE2b-256 405451bbe478453f8b530350efa1044f28ae21118c25aff0051be36acb9fe5c2

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7920377b95297e1e6edf16e3a68d802781a1721a452e2fd2a42f940ebea90db4
MD5 b975b6167a36b38a24017aef91ce35a2
BLAKE2b-256 23eb4601a511f3e19461ae1d28c85cb58e0d1c6f85b1e7f4d8dc8fa6dee70635

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9b831029935fe1757634e33adc07724fbd73cce2abda69b5a8d8dc87297d8db6
MD5 0142b835365c1b1db68cf14593f442e7
BLAKE2b-256 e84c5f50b2450e78ff2b87481ac43cb663670382f933f8cc0eecda395a6b76cb

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0747964dd009aec9b4e7badaa23daabef41e4c125d48996bc52a6050aca9cd94
MD5 8accdae7120e6e8ea656300e1766b9bb
BLAKE2b-256 1fdfabbec9aa5e5cb9e622648f377283437b581ac5c48619cca776ff4a3742e6

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2fde950ab9079f99006040fa3bbe3f32c3bbab3dc75f7ee5395585204adf6429
MD5 cd7fc9e4a71f18f70b417d6e07dc46f7
BLAKE2b-256 a960409093ccfb763195aa719f29500d16fe4f372e208038244b67093cd6149e

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a6652f6965cdd2cc12ebc7554bc223003224aa8686cdf4d4316fa9dba88b93e1
MD5 262344501517b3f875e4167869c4ac27
BLAKE2b-256 d6b930bdd3bb99b2e8f703ae83a0b309570dc632e974c9119cba985927901e52

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9759d707885c436c89b1339beeabe664e1f3563a21ad502a627016a7ebe36557
MD5 f5d3d886498a931719dc016ac9929c06
BLAKE2b-256 9b01d1e8aca684abe205cf4d49195c801d66629813e63de11498182711bc6231

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 adec6a696ac18e1078646a88b08da071e4c4dde535c49fa6f0b3dcf6431d1c65
MD5 b90fc278edfbe5ec1bd6b7873acd09b8
BLAKE2b-256 788f8f0d7e7ce9e2944481f2c62e2acf8c5285fa5ce4352af829c5864a1ddcf5

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp311-cp311-win32.whl.

File metadata

  • Download URL: py_itree-0.0.18-cp311-cp311-win32.whl
  • Upload date:
  • Size: 412.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for py_itree-0.0.18-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 2b68675d06508dd6db4f0ac0e3c9bc12735b29cf06f6ba79ba9a3d975a538c56
MD5 8134d13e6d051e1a719922e872838c12
BLAKE2b-256 fc74c3d710264db2fd71f96b108b6e13d451b796539a8fee963a392a2e87a0ef

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e22818707548d24e8e5fcdbffc96d09b7bc2b901b6354222077887f12ecc919a
MD5 3c8145ab0130075c2982145ad5af66df
BLAKE2b-256 58b555c0ccef61c4500e8cfb0e4c0acf39d3d8f56a59b6051d18ede40a3b6d5b

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 58ac77996fba7ee8c317ac2546e5cc7526359dbd892af0f5e6a55ced13bc55fd
MD5 ddf36ffca6da065be00c039b18d4a5e9
BLAKE2b-256 1c829f28bab16b1e0af309c1f62bd2f18f96bd90c94fb089e0c48d607d9698c5

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1fedc13ad5432be64a11dd8831a11aec451ac8485682e336e42aa40e9ae66566
MD5 23fb9e3a47208e744563de52ec0cd4ac
BLAKE2b-256 ab0350071803e9e02697d22e8fe166c456fee2e9c65170142acc7f2e4af29389

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e634af0f5a8e384e47c0387cbf20cb4e3732899661590b03e774132aa40f4be
MD5 5e3fb8e5d5e35bf9bb5884859a3d4986
BLAKE2b-256 519a0df23f5092f64b6b1c29c6d1aebda4e35c6bff9b6a93676a4c7e5dc36e03

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bfa40d5981fc6951f7ae956321d56ec3dc2680c61931e1983322be2bc039443d
MD5 dc775bd500b144c8571d1ce033b746f7
BLAKE2b-256 79d41af0a36397172efc9f21ae6307d8bf8d3f5170525346d63ba4a1918f1fed

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c0d75b9d2c2d0bfffeefd22d30b1ca71532668a17616d214b3c11a9794732cb0
MD5 bec6bbe631b9ff4bda6256e504be4f6b
BLAKE2b-256 2ea119b87f1e34ceb355b1c54661fd6b3d9140ff4caedc73d080bdd1ffe7ec9a

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7e5e6f795e630b502014081789adbf7e370e2625f2412f2d9ca88cf43bd55048
MD5 61a4747bc2509b6968ca977922f41795
BLAKE2b-256 491dbff2ee44bc78cec4f00e9502bdba233a350f7f8211f2ed9f9afd56bf6c14

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 28f9d8f328dd58f8743cde279266c70b88ab53cbe34bc840af859316b76cd3c7
MD5 13aa38f562f56eaadaa15a14310f2ef0
BLAKE2b-256 7f201bbc8cfa36390896428d60c14dfe0b8c216ea989ebdf0b53de843259c614

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ddbfe53661a29e6c08a7df2b15b5fa5dc92c4b5ec7a5bae682fe994c506ef914
MD5 35ced7467cb1c03c2426a6f88c32adb7
BLAKE2b-256 680b558aa73fb8ce122f2bd10854939e577a1cf3fc5361c8dc3fabbd29943e2d

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 66852d372502a57eb503e6401ba015b264b92e27b4ac33c323faf9d430c0d480
MD5 d30162ce5ff00dddffac82df855e77ab
BLAKE2b-256 f150d5eb0ab055e4f31b36d74c52443d6d26ff4a0074810952b3ec0685cbedbb

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp310-cp310-win32.whl.

File metadata

  • Download URL: py_itree-0.0.18-cp310-cp310-win32.whl
  • Upload date:
  • Size: 411.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for py_itree-0.0.18-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 623a3d710890d2bb3237da6b875f60e7c0691621a0ebe5e78d39109d79f51f7c
MD5 158f3cb541ef1c4afc8301a2f1baa686
BLAKE2b-256 50880c5c952ee522cbb710ab7cf15fdc50571dfc04811f48e3f0a5d608233a0b

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9122719acb91f43708a9e33f199448151ac46b9437bf493c4ab24c3040da92e2
MD5 f77fdf868dcb94249fc52ffceb88c698
BLAKE2b-256 8314bb3d0b87d3c34c52dac90efc90ca86f0f0d45e29352b5f6271ee27957790

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6e1c3f5d6d634e7ec5bfb78bf2af6d6dc53fb9488b019898d350562a0163c8ae
MD5 46278e4ad1a03594903465c325c74b7c
BLAKE2b-256 34b275f8c446cf5c0a039e9eccfb9047f364ab132600370f9f09fd28b2fabb60

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 515e6229eb643de6c762307be7e047161b614e37d7eadd0f4c349eab543256b7
MD5 1fbeb557041b0e6c827fd7ce418cb45d
BLAKE2b-256 14a0a302a36489fe359e1a1d60105ed9085bb9945f723859b9f87da85d124e5a

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 993c437b5623bc928bea38754a9821e97538be453ac4158aedb7364baa2dfe8b
MD5 6ec77753aaa122fa12474ad0676d4dc5
BLAKE2b-256 651222c3d257d73a7693b54fb3c01098573eeb207355a37f9f2afed1546538b0

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1aecef80f3b00f8b3c020c0047f196cc95f69fcb19b34950dedfffe03d94f867
MD5 58ee4ac10d56e63f5a08b1d4b41ec2d8
BLAKE2b-256 c17bf2c68945d8c2d4a7ca5335725f42cceaf1765fd15a8c385228176db69e87

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 75505033fd1682b12c53fd55060b24905bd68630dbdb7c178e7725038bbb96f3
MD5 340c1d044ef7085ea1ad1804351c8394
BLAKE2b-256 9f4f8868912bad158a7d95086fc8b87d83ef0ff9b79e9f667d015036e142ed19

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d164131698d11719591f0e74b1600a5b140a50ff009f4737cf1835626aa32261
MD5 72f3b689ed19d33e32a39efe5ad97843
BLAKE2b-256 32bc76b5ba79bc7956738f079e972957ef0fc3a7cc626b71f4401930109f02dd

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef5d99334ff3b48cd2ea66ccf3c52d9046eeda90d74e4a14a85a28fb8f6a5f5a
MD5 2e9c239b2e2433dfcc13e403933f24ae
BLAKE2b-256 df73addb9e9c14611204d0bac5d99ad688e59e73b2ec142a9a8677d30ad40411

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9724f5179fed81c9a940e3407a0ec0eb5ba5fb4b483879702abf9ec5da19ca3a
MD5 0c4ef96f5f6ffc38704cf0d63861d735
BLAKE2b-256 065eaf606c60a7ba85b6d6a239003a25252e2cce9f887a50ef1e753b9235b612

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: py_itree-0.0.18-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 412.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for py_itree-0.0.18-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6020face812aec8acb0c46a6fea125e62479a74bfb3be5a72c92501382991f2e
MD5 e66f7d98c4c8b090cbae106ad1fcc31b
BLAKE2b-256 712bf4bfc1e8e6f84148c50037ea25f6ad5fdfdb2cbfa5676ca11fd9f8ce5ee2

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp39-cp39-win32.whl.

File metadata

  • Download URL: py_itree-0.0.18-cp39-cp39-win32.whl
  • Upload date:
  • Size: 411.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for py_itree-0.0.18-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0960c1ceb9592686e59fc5c7b812d06344371f97e859abab71a5c5106c7bfd12
MD5 5967b0e6e7feda0a01b67c02e646cb27
BLAKE2b-256 ee45a055c30a0fb95077dd56998792ef54043aaa13883b609a1a00c4fd49f5c3

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f60ee2a0a49e935048fe518770a023784cc5a8eddf7ce8aefb248bf3a7cef574
MD5 8bcf541e3d32b0d46aef8b89d4d68e03
BLAKE2b-256 dbbb1ffe60ea3011c9006fef0a647cd7bcba829d9828a1a5395b4f637554378e

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c9283ebc5dac31729269e545593fe5f021603f113d3e1e8f61b7b476f846fd97
MD5 de20eda938cdab81034ddfc75d0dc999
BLAKE2b-256 663db04de464af7709df18a0062631cbefb5c44d9e367ec8a4c470d8ba4b9a36

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d9f193826cd69a3646525eca0c88aa89e79dc333e340338ad635b5d5efc21e7f
MD5 53244d18c8dc41050f683f4373f233d8
BLAKE2b-256 c59a581501f5385a2d9eb850d46eb871d5f9a8d936fc9276f92d6de94e21eb8f

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c0f6ef0d645b028a5aa319ea950f87b2e2102668f8398678e9d14528d394524
MD5 bb497d6b4b53db34dbba4e86e86c1531
BLAKE2b-256 47ba77490430e9a2c5bc6b774d17caab5725eabaa747da1ad4d37659938ff054

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 017be83d9fe89d8ef20aa6fa9f050fe87039cbaa8075a6e7b33447aa67f820cc
MD5 f7b99055d61faea77b234e5857c4d5ab
BLAKE2b-256 7672b884c91494eb59e1f1afa8f94e9c4ca2df0c50528f448c43f68bbf3fec86

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 95c0936c045661a09cbcda1ba1600ffcd418b03b132a7a0c12a8bd143f9fe19e
MD5 6bbfbe905a7e0430058f5c9763a78f9e
BLAKE2b-256 a72bc8b4cb00caa823f3d349ad647f223c09a3d4253182c193374bdaba5271c9

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c7ab95460fc2f6c8ba5486d5c8f2b5907f6c11c820d0d54bda2d1dd9711d0bd0
MD5 1730e6a95033c9701f5044759380bb94
BLAKE2b-256 2cb1c980c045bc996d682d53ea948f4c0cd3a6d5f2616b304716dd9986c7e459

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7c3ff212e73e5fac6247937c58aa24e69bb7e4001db16724ab0733cf4e810fd8
MD5 6eb3c75e4ed0697be7e61df2538e23c2
BLAKE2b-256 0d72ebdacd1f16de21d34bd785cb10c8d0f2848c3f55f4419d8c1ac835a3f655

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0bec4f63bcf02bd36f3bcf941d537c0f4ff74ae817093b5eecec8c7f39a9f6ee
MD5 7ae2829bdce42e388ab7cfc712be8d40
BLAKE2b-256 789ce9d4ed9709c69eac1b6ceca2696dc1c1aa0acd1ad9886dc986811ddc2bf3

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: py_itree-0.0.18-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 411.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for py_itree-0.0.18-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9a634da97ad8cd3e6f5b75f9f07d016f402f1e315a0413a0a520e11faef52378
MD5 3c030d155e1fcc3293b1dbe44d075979
BLAKE2b-256 31e72d12c2e4d69ae97c6cbf66e3a6e871650cae11919a5dfd721ba0e25c5478

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp38-cp38-win32.whl.

File metadata

  • Download URL: py_itree-0.0.18-cp38-cp38-win32.whl
  • Upload date:
  • Size: 411.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for py_itree-0.0.18-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4c2e7531639f95452e0bab03bb1275edef4dd4389b0642e477bca1710ca08f29
MD5 5f0844e98b969a1d012d8e2bbc6f409c
BLAKE2b-256 00d79677cdbcb482719f5e5aefe842b46c671b05024fd454241e3cc64a9f2351

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0c41f9a2e2f2a8208b95a90a9480f0024898398f2d0f894d2136d06e47ffd4d8
MD5 33c39e2154127306c9588aead73943cb
BLAKE2b-256 c31aa54c7399df9b2ef5c51f4e812932960647310f369dd0b3ed847c7e508f1a

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 99d130a98eb2182c6860da13fd3248a1749ee9e8d42ac7efd3e4386ba41a925e
MD5 a86f6631f7c5ba049cd44b42899d3c49
BLAKE2b-256 e278b5cae23a64f402e6ce114595bd592cf5c9432b7dc8b513d10144cf27a06d

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9d857b45d018d812509927219f944b5f1f684e3b7e459832b801057d49465431
MD5 5ca4660ca3730c98310b892f3c2efb2d
BLAKE2b-256 94d71e6b3a44a7f0ff7d04dbec30c6ca3dc2ea0276ec16361eecb3384195848e

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7033086056ddfe4f5dc6241335846a5cf25f55cff1f1c43033723c9b45b702b
MD5 dd2436604b1cbd60c8dd8b830b495750
BLAKE2b-256 36000ecf230aa34ef3cc013089fba2e86e611586e2d7d02b5bcf23a4a05b8260

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 af1bf7385eab9343f2952b88ba7e4fa4d525307b9fcafabc5469b2a0856856fc
MD5 3b8994256cf364ce31199b37f8717001
BLAKE2b-256 0a372106917f504453184444251a10ba77b0275c806a96b1b0c78ef2b4dee2e6

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c4d3fc532a8208b729452eb78eacf31b35bb7954b2a0398eb5c926835d8914b4
MD5 c0235ebfc6cb9b345e2f271c31fa5363
BLAKE2b-256 2c55df208e328dc15f16bedd5f27a3b36123c89c2d788210f2e0b35fd5993fac

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2a0cedb3d073eb635fe9c75b7fc4ca69d69e318c62290a5b19be5b16db149b64
MD5 4a3338078d220bbdce608f2529ddc273
BLAKE2b-256 3b948d10a4d0e7ef06e8c9bf989b1365e2a958b16d0cb935960d2febf094f58e

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1a9f38b541943bb516edbfaf7008cdf5daaf3a0f139496e56f0738272388ab9
MD5 8bfd738d4a790ac8626986f1449fb57a
BLAKE2b-256 b5abe0c944468d5335dfc660409f160921793b207c971bf03491080461f2066a

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2a5279460af5da3bb49c2c2583a93f7d768a26f6b3231a970fe5244f74152f68
MD5 885b23faa3c41248046cccf35137585f
BLAKE2b-256 b09e032d5a6e778a8df163220fa7cd20d40ec65cacc77ab05c8eb295c96dcfea

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: py_itree-0.0.18-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 410.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for py_itree-0.0.18-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cc99616377f4654718bbfc1885ec2e31478cb765c6eab311ec531b604a20abce
MD5 e2dcd276848cdceecb78df7330c3bf10
BLAKE2b-256 10c75459138231920c90ed2a14bcf215ea0d439a50ea3b85fdaeb83e2351b208

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp37-cp37m-win32.whl.

File metadata

  • Download URL: py_itree-0.0.18-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 410.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for py_itree-0.0.18-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 6dbdeaacad040bf44aa4af4e0e94a3ddc9f70964c58edc8b3d846686e60bf55e
MD5 53b4f54edc2d09cb5406fdc5f1a23e28
BLAKE2b-256 fef1850a42965dc5c30db474fdfda9b83b91f814e3152a26e01c8c286dbbd7ec

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c3929fb523aab6ae9c08570327127b1ca3853cd741f8e9c0ab511bcdf573b4da
MD5 c038e572eccf6d2864f8c6292b92a39d
BLAKE2b-256 3c6ab9df9cb2028345031f2832d6b327ed9e9ea3cf6e861286b76ee1e8b3cda8

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a79cdfa0a6b4d6b5823c318c853788301ea08d2d00b478343cd976a63ca1f811
MD5 37541b163b3c01b61325f1c36277c591
BLAKE2b-256 36993dabc7f156be9c70dd3adbe23e97fd49fabb14db32896967e935ac79c570

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2fafa448126bbf28a41209d70b4241407d91b47a037fe0808a57c6484f00cabf
MD5 37cd5a7f7f308eb9a5ff8bfa525b41f2
BLAKE2b-256 ec293528f243aa3c728cd69bf2147db3ea0e47d0e23f30d21ac64dbbb609b18e

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b652aa31748bd150a56d27dd87fa70c587105c289acda4bba0cfa4a7a96a05ca
MD5 f499492206a633d947a9ef79f5ad0ad3
BLAKE2b-256 2c48b4d94aebd8f1b0a30fdec35b33ab75d46e43e11f574559faddb63e886404

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 75787dd8217385ae571d80cfe6f21f0e490dee797084f8abea20f708b5c5b4a5
MD5 c096ce7da3c4d549ca0afb31802842e5
BLAKE2b-256 3cf23a38eff10ac08abb95dfa3eb6a985497dbc0ef7d4982a2b55364fd5614c4

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 205652ce316d75522658736fd0db97f20019bdc38cd614a10aa378194654650a
MD5 8e3553b3dbeb2036bdcd8f8fe5ab47db
BLAKE2b-256 d7afe0f2638402924a027ced037d45a91016f9c9eb6a6e41d9595387d7608e4d

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 78f674da8042bd2092e225ae041a8eb5fc60230bd779c8619889f222352586a0
MD5 4049458dbc168f72aca9f2b8865148d7
BLAKE2b-256 d7e626fc07c49e2c66409e45eb948318799601078cfd2c39215302efe753829c

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: py_itree-0.0.18-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 410.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for py_itree-0.0.18-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9793c0102ffc8c2597861df242c999b6c94e56dc89d19a07b546f24fe041d61e
MD5 13dc5280d78f2bfa38cdab3408108dcb
BLAKE2b-256 a1cf1b4dcbb1c15bc92afa7b6d8ad8501867f266d236f71805fa909e75549540

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp36-cp36m-win32.whl.

File metadata

  • Download URL: py_itree-0.0.18-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 409.9 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for py_itree-0.0.18-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 1a2ecd1dd2ee7e2cc56d36b627db1740fba1aa2e246a28b20589dd50091e7cfd
MD5 5e119d3ef0746ceae67ce1dd7af49400
BLAKE2b-256 3f12de63ffa02d0e047ddbf64903e26bd4bc200248c4c01d6cae2a4ef7d78c06

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 512958ad9c378096597d18fe1fa65bd5c695bac66f08b459fa785262b311acba
MD5 86b24f1973bfeb5af4939228bf5a39f0
BLAKE2b-256 4e8b3d4f2dfaa26048e79f6de5ce5c76c3085fa80a717dece7d1ea06760c17c9

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f4e4032cbe9764bab195a989a0b85ed896594111d4d8e63835347bc38a33f1b4
MD5 4f19dbe19cc1925eab01a432cfb27ef5
BLAKE2b-256 0f958cc396482ba52a616ef20e884e87e5ea0739a7d9d42e64b52bdce2a149b4

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d9ad541a946ce7c34a917c0889557a353335dba8abef8d238237d7fe33ede153
MD5 9575a8125c12f0266585f57fe289484d
BLAKE2b-256 c2c3dad0da770e01472a7ccaaa2956294870f7f00e1e4c8729681898b82010f8

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02c36b89df2893d276af4637da2c5b890395c9b629d222395c8645688ed8aae3
MD5 219a34ee938dadd7117e2c6015c8ae72
BLAKE2b-256 748728c95a3172706e3e53491fcbcc3fbdc9517b263fcbf5e2ed966b58fcf771

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 27debfb13348b16e973a057fdad33a983674555ba0522fa0c4e2a0c414ef4fe1
MD5 6f8c4706c0e15ba2c776d0932b4aca8d
BLAKE2b-256 2ab0444b1c01dd4af35be9d9e727560eabaa3a57b163375acf774a3acf12641e

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00c90a068226949ad997bd4096d67903a6f8706bcca1de2db9e1b52ba0c49d64
MD5 d4b033b20e6d58f94a51484214a05927
BLAKE2b-256 3e770250071b38c7851308f288ac8324867e1a400a705bf80cde4a7a3305835e

See more details on using hashes here.

File details

Details for the file py_itree-0.0.18-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for py_itree-0.0.18-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4be58baa3dd8061a5fe716474206554c14829434091198bc2f6a3264ecaa04af
MD5 0d78aa4f706a0427373532a3f07f2b11
BLAKE2b-256 6c252e49158f2fcb137ed28b39cbcd97c30e579e2dcbcf9b3baedded89e8ae25

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page