Skip to main content

Jones and Mueller polarization - Optics

Project description

Python polarization

https://img.shields.io/pypi/v/py_pol.svg https://img.shields.io/travis/optbrea/py_pol.svg Documentation Status logo.png

Features

Py-pol is a Python library for Jones and Stokes-Mueller polarization optics. It has 4 main module:

  • jones_vector - for generation of polarization states in 2x1 Jones formalism.
  • jones_matrix - for generation of 2x2 matrix polarizers.
  • stokes - for generation of polarization states in 2x2 Stokes formalism.
  • mueller - for generation of 4x4 matrix polarizers.

Each one has its own class, with multiple methods for generation, operation and parameters extraction.

Examples

Jones formalism

Generating Jones vectors and Matrices

from py_pol.jones_vector import Jones_vector
from py_pol.jones_matrix import Jones_matrix
from py_pol.utils import degrees

j0 = Jones_vector("j0")
j0.linear_light(angle=45*degrees)

m0 = Jones_matrix("m0")
m0.diattenuator_linear( p1=0.75, p2=0.25, angle=45*degrees)

m1 = Jones_matrix("m1")
m1.quarter_waveplate(angle=0 * degrees)

j1=m1*m0*j0

Extracting information form Jones Vector.

print(j0,'\n')
print(j0.parameters)
j0 = [+0.707; +0.707]'

parameters of j0:
    intensity        : 1.000 arb.u
    alpha            : 45.000 deg
    delay            : 0.000 deg
    azimuth          : 45.000 deg
    ellipticity angle: 0.000 deg
    a, b             : 1.000  0.000
    phase            : 0.000 deg
print(j1,'\n')
print(j1.parameters)
m1 * m0 @45.00 deg * j0 = [+0.530+0.000j; +0.000+0.530j]'

parameters of m1 * m0 @45.00 deg * j0:
    intensity        : 0.562 arb.u
    alpha            : 45.000 deg
    delay            : 90.000 deg
    azimuth          : 8.618 deg
    ellipticity angle: -45.000 deg
    a, b             : 0.530  0.530
    phase            : 0.000 deg

Extracting information form Jones Matrices.

print(m0,'\n')
print(m0.parameters)
m0 @45.00 deg =
      [+0.500, +0.250]
      [+0.250, +0.500]

parameters of m0 @45.00 deg:
    is_homogeneous: True
    delay:          0.000 deg
    diattenuation:  0.800
print(m1,'\n')
print(m1.parameters)
m1 =
      [+1+0j, +0+0j]
      [+0+0j, +0+1j]

parameters of m1:
    is_homogeneous: True
    delay:          90.000 deg
    diattenuation:  0.000

Stokes-Mueller formalism

Generating Stokes vectors and Mueller matrices.

from py_pol.stokes import Stokes
from py_pol.mueller import Mueller
from py_pol.utils import degrees

j0 = Stokes("j0")
j0.linear_light(angle=45*degrees)

m1 = Mueller("m1")
m1.diattenuator_linear(p1=1, p2=0, angle=0*degrees)

j1=m1*j0

Extracting information from Stokes vectors.

Determining the intensity of a Stokes vector:

i1=j0.parameters.intensity()
print("intensity = {:4.3f} arb. u.".format(i1))
intensity = 1.000 arb. u.

Determining all the parameters of a Stokes vector:

print(j0,'\n')
print(j0.parameters)
j0 = [ +1;  +0;  +1;  +0]


parameters of j0:
    intensity             : 1.000 arb. u.
    amplitudes            : E0x 0.707, E0y 0.707, E0_unpol 0.000
    degree polarization   : 1.000
    degree linear pol.    : 1.000
    degree   circular pol.: 0.000
    alpha                 : 45.000 deg
    delay                 : 0.000 deg
    azimuth               : 45.000 deg
    ellipticity  angle    : 0.000 deg
    ellipticity  param    : 0.000
    eccentricity          : 1.000
    polarized vector      : [+1.000; +0.000; +1.000; +0.000]'
    unpolarized vector    : [+0.000; +0.000; +0.000; +0.000]'
print(j1,'\n')
print(j1.parameters)
m1 * j0 = [+0.500; +0.500; +0.000; +0.000]

parameters of m1 * j0:
    intensity             : 0.500 arb. u.
    amplitudes            : E0x 0.707, E0y 0.000, E0_unpol 0.000
    degree polarization   : 1.000
    degree linear pol.    : 1.000
    degree   circular pol.: 0.000
    alpha                 : 0.000 deg
    delay                 : 0.000 deg
    azimuth               : 0.000 deg
    ellipticity  angle    : 0.000 deg
    ellipticity  param    : 0.000
    eccentricity          : 1.000
    polarized vector      : [+0.500; +0.500; +0.000; +0.000]'
    unpolarized vector    : [+0.000; +0.000; +0.000; +0.000]'

Extracting information from Mueller matrices.

m2 = Mueller("m2")
m2.diattenuator_retarder_linear(D=90*degrees, p1=1, p2=0.5, angle=0)
delay = m2.parameters.retardance()
print("delay = {:2.1f}º".format(delay/degrees))
delay = 90.0º

There is a function in Parameters_Jones_Vector class, .get_all() that will compute all the parameters available and stores in a dictionary .dict_params(). Info about dict parameters can be revised using the print function.

print(m2,'\n')
m2.parameters.get_all()
print(m2.parameters)
  m2 =
    [+0.6250, +0.3750, +0.0000, +0.0000]
    [+0.3750, +0.6250, +0.0000, +0.0000]
    [+0.0000, +0.0000, +0.0000, +0.5000]
    [+0.0000, +0.0000, -0.5000, +0.0000]

Parameters of m2:
    Transmissions:
        - Mean                  : 62.5 %.
        - Maximum               : 100.0 %.
        - Minimum               : 25.0 %.
    Diattenuation:
        - Total                 : 0.600.
        - Linear                : 0.600.
        - Circular              : 0.000.
    Polarizance:
        - Total                 : 0.600.
        - Linear                : 0.600.
        - Circular              : 0.000.
    Spheric purity              : 0.872.
    Retardance                  : 1.571.
    Polarimetric purity         : 1.000.
    Depolarization degree       : 0.000.
    Depolarization factors:
        - Euclidean distance    : 1.732.
        - Depolarization factor : 0.000.
    Polarimetric purity indices:
        - P1                    : 1.000.
        - P2                    : 1.000.
        - P3                    : 1.000.

There are many types of Mueller matrices. The Check_Mueller calss implements all the checks that can be performed in order to clasify a Mueller matrix. They are stored in the checks field of Mueller class.

m1 = Mueller("m1")
m1.diattenuator_linear(p1=1, p2=0.2, angle=0*degrees)
print(m1,'\n')

c1 = m1.checks.is_physical()
c2 = m1.checks.is_homogeneous()
c3 = m1.checks.is_retarder()
print('The linear diattenuator is physical: {}; hogeneous: {}; and a retarder: {}.'.format(c1, c2, c3))
m1 =
  [+0.520, +0.480, +0.000, +0.000]
  [+0.480, +0.520, +0.000, +0.000]
  [+0.000, +0.000, +0.200, +0.000]
  [+0.000, +0.000, +0.000, +0.200]


The linear diattenuator is physical: True; hogeneous: True; and a retarder: False.

Drawings

The modules also allows to obtain graphical representation of polarization.

Drawing polarization ellipse for Jones vectors.

ellipse_Jones_1.png ellipse_Jones_3.png

Drawing polarization ellipse for Stokes vectors with random distribution due to unpolarized part of light.

ellipse_Stokes_1.png ellipse_Stokes_2.png

Drawing Stokes vectors in Poincare sphere.

poincare2.png poincare3.png poincare4.png

Authors

  • Luis Miguel Sanchez Brea <optbrea@ucm.es>

  • Jesus del Hoyo <jhoyo@ucm.es>

    Universidad Complutense de Madrid, Faculty of Physical Sciences, Department of Optics Plaza de las ciencias 1, ES-28040 Madrid (Spain)

logoUCM.png

Citing

L.M. Sanchez Brea, J. del Hoyo “py-pol, python module for polarization optics”, https://pypi.org/project/py-pol/ (2019)

References

  • D Goldstein “Polarized light” 2nd edition, Marcel Dekker (1993).
  • JJ Gil, R. Ossikovsky “Polarized light and the Mueller Matrix approach”, CRC Press (2016).
  • C Brosseau “Fundamentals of Polarized Light” Wiley (1998).
  • R Martinez-Herrero, P.M. Mejias, G.Piquero “Characterization of partially polarized light fields” Springer series in Optical sciences (2009).
  • JM Bennet “Handbook of Optics 1” Chapter 5 ‘Polarization’.
  • RA Chipman “Handbook of Optics 2” Chapter 2 ‘Polarimetry’.
  • SY Lu and RA Chipman, “Homogeneous and inhomogeneous Jones matrices”, J. Opt. Soc. Am. A 11(2) 766 (1994).

Acknowlegments

This software was initially developed for the project Retos-Colaboración 2016 “Ecograb” RTC-2016-5277-5: Ministerio de Economía y Competitivdad (Spain) and the European funds for regional development (EU), led by Luis Miguel Sanchez-Brea

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

History

0.1.1 (2018-12-22)

  • First release on PyPI in pre-alpha state.

0.1.3 (2019-01-22)

alpha state

  • Jones_vector, Jones_matrix, Stokes works.
  • Mueller is in progress.
  • Functions = 9/10
  • Documentation = 8/10
  • Tutorial = 7/10.
  • Examples = 6/10.
  • Drawing = 0/10.

0.1.4 (2019-02-03)

alpha state

  • Jones_vector, Jones_matrix, Stokes works.
  • Mueller is in progress.
  • Functions = 9/10
  • Documentation = 8/10
  • Tutorial = 8/10.
  • Examples = 8/10.
  • Tests = 8/10
  • Drawing = 10/10. Finished. Polarization ellipse for Jones and Stokes (partially random). Stokes on Poincaré sphere.

0.1.5 (2019-02-25)

alpha state

  • Jones_vector, Jones_matrix, Stokes works.
  • Jones_vector: simplify function to represent better Jones vectors.
  • tests drawing: Made tests for drawing
  • Mueller is in progress.
  • Functions = 9/10
  • Documentation = 8/10
  • Tutorial = 8/10.
  • Examples = 8/10.
  • Tests = 8/10
  • Drawing = 10/10. Finished. Polarization ellipse for Jones and Stokes (partially random). Stokes on Poincaré sphere.

0.2.0 (2019-05-25)

beta state

  • Upgrade to Python 3
  • Stable version including tests

0.2.1 (2019-09-04)

beta state

  • Bug fixes.
  • Solve incidents.
  • Start to homogenize structures for both Jones and Stokes.

0.2.2 (2019-09-04)

beta state

  • Bug fixes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for py-pol, version 0.2.3
Filename, size File type Python version Upload date Hashes
Filename, size py_pol-0.2.3-py2.py3-none-any.whl (63.3 kB) File type Wheel Python version py2.py3 Upload date Hashes View hashes
Filename, size py_pol-0.2.3.tar.gz (3.0 MB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page