Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp311-cp311-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp310-cp310-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp39-cp39-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp38-cp38-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9fa4e79ba569d1491594918f9c6cb6d23537f3f3b88f9eaac4ee2b27071040b
MD5 6df2b738d91f837901666fe906d254f7
BLAKE2b-256 c811257b4af98dfd02aef1aa0b9795b0c000da50375229cef6b4b27e76a3e4a4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8354c651b22e3dce7197e90047da2fc2ab88f09595e6bef26300fca23cc8dc22
MD5 41fb1952671da4ddfb56070b3cf9a85a
BLAKE2b-256 6ef412513005903b4ab4e57a45e79a302f646574844097e01efad152c2338df7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d4d908131378f467c17cf541fc06598f7b71b1c6f68cbb71bdd9f4d388647e5c
MD5 09d66dbc9ac99cc3e3fea9cbb8b91449
BLAKE2b-256 5e8bf5b66e1e3872285601d479c9b65dd84a31f7fe8865f61639d9234931fa6a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f7e54f33fc2aa7c201e8d1474b027d394a5f7c2d272f29ecf0441c1acc949f50
MD5 306f4ac86f799edd6ffd4ef94ee6382b
BLAKE2b-256 de06ce37beb348762e96be613400e33d64e42de7a0ff402447c8dc9f6e21a630

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e9ef1436cd97bf47dbcc604cd318010902b2bce84c8609f5fec391fe27c4e8a7
MD5 20fcb698c74cef8283e9ef7b2f9f0049
BLAKE2b-256 a88f89fa58a9daaa847c08c912e902ebff68e8345ebf567ebd0979e4aac77635

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a2f4104180b825f93353a7943cd677b784ea347056961773786691919fc6a156
MD5 8a89a7057e46d67f879034561f01757e
BLAKE2b-256 3fdaac42b15b7bfe7e217690d8cd7dc8988f3a6106dadf26a48d3b0f083c7b68

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eb62818d798ca8430feb3570a5627b10f5f90b73d1b174f79b92bfe3e77da1c8
MD5 55d5572b734c2a69e987b9b2d613ed8b
BLAKE2b-256 97c0ab48010ec21f086aff02b3aaa18b3c8f8b1857ab0c74bac8c76c2c7a4d58

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d6ba8d4a09796694246ac75fc3569552df501402935ed85c2f2ab33cb7ede222
MD5 00aff692327a5f01b7d25c15875c0b41
BLAKE2b-256 f932407bc5f0276c7ca4210fde332dc7d6b7ce9b370ce664b6730ac15ef7da91

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f831a3c089a64c2e05305a23ffeffb74e171d2d6ad3f1b958048f91f6df2f000
MD5 a085177b01ef06caf34a8325cd4e5dbe
BLAKE2b-256 ec961a0c365fed12bcf02bc568f1227fdfe6a1cd8ff3ef6c504474ed183dd0b5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 97407d965086b6c17aa568e1f93981f4a4bbe4cc93f469112b3227616505dc5a
MD5 26b5cffdcc5f063bbba86fd70d9630fd
BLAKE2b-256 d212a3808c76a555296f9db9ecaaa65af8b1a76f533fbe4b76150da53d0e1fe5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 33f0fe314670383340774f68d3c4a9fb9ed048ab2e485d666d5a4665b32570ef
MD5 9a4fdea6d0f0f0c651945a8016b57b13
BLAKE2b-256 6fd22158cb020c57edcc9681a011fc8f463aadec8d9733a3bb6c48a1ad29a288

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f6077d4a2804ec4bf92a6379ea80a5092cf5c2d57a3256dc1ab1a70902f1d7dc
MD5 aef39746a629fd120dc117edb1d67ff3
BLAKE2b-256 bfc660c67a1d6153dcc6bbda0a7f06db1239efde9c459bfca76438dc5e4a4ea4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b80bac3d50a7373101e495203af8922509838ace71dd39b6c6be1c13b99c005d
MD5 617afcd2839787e7a0d768d34227f31d
BLAKE2b-256 e1ebb604a33deb16087a4ca52480e97a3783fd84fd479fe5fede130a3de30228

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce7b347be4f0eede63ec21d4603fb70c5f75b2ad2b52f5afb6c5c757675f3cf4
MD5 e5f59a570e5511647e135ece738c02aa
BLAKE2b-256 d5f2795eae3c223e79cff35cee4fc450e0385df386d05233c03ac9aeb048628d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0fd48becbcba25428e5092d1f45f562aaa617a6d6eb57fc15ba61610545b7c75
MD5 5ccd0f9d404fe62d59dce601a58e5deb
BLAKE2b-256 0f556e6ed85491ae9d3bb9d8af280ba5148c8ef592ced8bae157de7468719f71

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f471aa71b8289ef3965999fe5aa5f1897012f7722efc1d2468008f1ee7a3625b
MD5 723b8891b5b4b4b7028de1559bcb9a27
BLAKE2b-256 80d016604d78c057b1b5315cd9e16c88e8193a694dffc5254b600deb6d4e856d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697797664-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 363847e08aa622c8fe485d1e334e3a15f2295ec636e2e38921aa82d27e7393f1
MD5 425988bb6e5c7245657eca957b7d1fbf
BLAKE2b-256 c6f04b79b9491a3217d59d147682994d76c716575b5fffe92b74b9254f902ce7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page