Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp312-cp312-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp312-cp312-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 fe99abba66c30e9875fb171c2eac88d1dd7655d8d0ba019b4bcf4420727617a9
MD5 10f265d1ab798ebfa72d05a5c00a4998
BLAKE2b-256 e54aec66c6972188165c781327f9ca6c42597dba09029d29f9cefe3279d05f6b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b719ef903b3869568d0fa4564b869784bb69c19d96166fcdc0d248afceabbe49
MD5 8e5b12e670b473bea5b8ef6f715b2a8f
BLAKE2b-256 d7defc15dd105ade400ebd700aa177e9a1a1da11fa6386f2c9dd7d40c9a10c60

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a02bfd8162a5b7acd339b7dd1fceea46fbbedc1bbf426984b233f3f363c7f38e
MD5 4df0d28589a057b5039c3048eed24b04
BLAKE2b-256 6deeb6e6a4b5272466775e46baed8b82d18945c8d7a820ede2d4ba1ded81e7bb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b186efa6ba18ff967a22f0a1bdbcbe9aa738f5569fd60c18cee85a089f8723b5
MD5 532ee4fc4a2886dad3cbeed631f4987a
BLAKE2b-256 2a42127fec30d03405c279fb710d358b0bd6be76c696a3a8f468687fd4dd3475

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 10ec719a962f3cb0302a7e05773687d468fc4ed4e888f077a7ba29647eea7aab
MD5 5b1088cad15353ac830f5d63ead6ca2f
BLAKE2b-256 8a6de718207018d1032179ed540633165be6fd0f9ce850c2e806d7bc0b12a0ec

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d204ddf7d125ba32cc4251dfcf639aa7a9203a1fc3a985920ef4914cce96168e
MD5 6a0d8630587d67815afb7ca1e0bbb9a8
BLAKE2b-256 a08bba5a3db535e61410eca6da9591ceac6d0c0e54f645f06f94eae746bfde0d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 36955c799252eeb46b37104ab196f30959622e0a8efec778d77135227968f754
MD5 474a03b864707fc63cc88c58189e6312
BLAKE2b-256 d883ff387ae2faa6a231526089da7eee877c5d9012d3dc4d2a24cab78f7e9bf4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310211697830144-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b8dd7dbc18108b56392c5b0cbaf5dcb44e05536d0f9fa20a3fb80cb5c890cf77
MD5 15d887bd41804495d409438bd60dd3e4
BLAKE2b-256 155b477d8317b5936a73da0b0834d68313acb547b1913fd55a6075587dfd5d4f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page