Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp312-cp312-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp312-cp312-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp311-cp311-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp310-cp310-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp39-cp39-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp38-cp38-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2545005a446a7b62aab10acc827908915dc901e2d7030d7940b1b2b33a4a9923
MD5 d31c73aec18b3348a2364367a86e1c16
BLAKE2b-256 b919a4afdcfa2cc8513403dfb75b0ac3ca990ba6161e16a57f8084127e63617f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5dd16eb8002aa33435208b78018e0f661d945e82735287b5d8b1adef0f0f8fa6
MD5 9fa01bb51a870b479c84cae1cd4514ba
BLAKE2b-256 53fc59a4cf24d3f9f6157865108099ab5b0943c9b1a5577de90a0ebdf58b88dc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8f5cd278d1e30a6cbe015a8da9e1f83e5c93ac36a2ed90d7f129fc3bb86d9955
MD5 e3d586c0432b75debe91bd7bddace65a
BLAKE2b-256 c573c3e1e6b7f196177bc81d22b72162906f115ba7bcff4ff7717028513d8080

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 39fa5a4a7497c3e3340853023dee40c7135f43ff0827458f4f357944a754eee2
MD5 f929ea78ba20873e615857154bcaab5a
BLAKE2b-256 f3f74bbef26dee1c29f9dba482bb81580238b93f130e3a0a8c749ea696213bbb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1ddcf2835e19a43ad8d2c032d93237061503308877fdc173dc0dd7543b76d4fe
MD5 a507ccaac8aa103ebdbed9d6c53d0a19
BLAKE2b-256 f9e16f04b346822f161ac0bfe1da952f81ee2cac9d6e3a43a8a2b9436dd91f38

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f0beecc3fffe302c2eaab7a562f03c95ff302039c69a0bf2457824253f32f41c
MD5 c6079deb64f4cde627ec743e0990996a
BLAKE2b-256 832534cb2166a9a74a1752583661413547407dff9cd0a2b08bc91030ba0980a0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a33fc00a094b551fc7186c1e3874fa18a73854dcecd2fc956e1bda1290b392b8
MD5 ec2fc4cb5d79a323e00e009c39eabbd6
BLAKE2b-256 b4619958a6c18976ffaf2cb8dc62ebed5b1ba51f0ac0ce3ddfd3610faa556877

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bdf51b5409a5200b7d5c69252f7fc08773d2d3e38568222a317284bfbea80bfe
MD5 97cae955261c231d78d1238792ef685d
BLAKE2b-256 90daf1111122f573bf15caed63f2cc738473a649d3bae809b1c204a94321f8e3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ca68e1d008c3cb2d801ec2f275235408fb79824ecfb8a7ec709ae768d8603c9e
MD5 81b7d27a190c2014539600feb22c2312
BLAKE2b-256 3f8db95d1c6a60a6379c6c03a6388067d3d52bf83a5d18336f467ed4ac210558

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0fab129661e17dca1fd9bb35d973d50116155f0f4634d170c924cb04b7c3c9d0
MD5 36a1f771a4a85255cb026b1953ebfbb8
BLAKE2b-256 8bc14bc6f3b75fcc6f9136ca06c510edff24603f8c4b456878fae54a9b487435

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1d222682da22b4fe8daa01fe79ea3deda9c3acaca2510fdd22a7b6093c4c18d8
MD5 d9c675acd9ed1a0a5dd9271492ccd63b
BLAKE2b-256 a98f36e5a8f51b3223b31155969aace9fae32cd736b08e918aa69b0682784566

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc1ce824e938f8462e7fe13f47c834dc02b3cf6bed0bc09ba0a511db8c2dab50
MD5 38f89275e3f3561885e9dd4bafd7c12c
BLAKE2b-256 1c374c1e55a5e6bdd03e6c15574d46019f726c635f612c55ffb12d7a1957f9f1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b00a81b9a9f442a4bad45398582c8e1e66a61f3053f9bd2d7bc39ff3a26e282
MD5 31b5a23fed212100a36830bd5e77e60b
BLAKE2b-256 9277085ff676200486a8e71ad3e675dbbb0be39e3c0e732bc729cff95116b84b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 579558b4b923b34af27b96fb03a4c6508a705b471410a560315ddbd3dbb96ce1
MD5 e776f6ae0b276d515eb0e194171b275c
BLAKE2b-256 b1cb814b6e3b4ff3fe92105de3b99e876be34ce283cc3348167e9ef7525d04a4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5521626093df1334b47dfa1693d96e2bfb1318fb2768c0bee692f7aa517488fa
MD5 3c41455d0267c50f865a63ca0e3f1232
BLAKE2b-256 abc9bd2a72ff883572cc0840a3106badd76d86923303a1acf365be3de0801726

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 08de1df83d90933f74f9525b6790dee9b49bed9ade03fcbbae86b3634be0a0ee
MD5 4a3ca3288fa0c2122b4b5c5e9bee089c
BLAKE2b-256 76963ea06c4056ed1922e86eff159b20f6d6daba3f839770b7cc12ab0848df05

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 803acaf0a91a9e61ccd4a844d7eb23171ebe8a02635b3cdcda34906f773ce2d4
MD5 7b1add9a12d1e6c2dcbcc42e8ab97304
BLAKE2b-256 8b7a7710fda7996fa82bf1bc84b121458b25235479cbed2ce73ad57643743d52

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 deaa4ffedd9307307464b84bc0389b1f716f6c4615d01a06ff6157cc60b62e79
MD5 6c20ef8e738938d8da88668d2c909792
BLAKE2b-256 068b9d987a75c9a8d6b9378386cba4dd8a214f8197d746148f4b2c56d8bd29ea

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 27e3c74516b6d3488ed938e42c48ad24f97165ce669a9cfbfda14c7d9000606e
MD5 9f3f8d252a94b096b5b1a4a126abc430
BLAKE2b-256 eb2a559525bb9a250d1ac7eea6a019aa8aeaac6bcce9461f5fb4b49b6665f819

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a5b94b741ad30b95682005edde863e387a5e3bee0d7238ba0225f55fa2e0f39d
MD5 7255eebf80d459aae08e415b4816d176
BLAKE2b-256 93e0e0b1310e9e2c3e95ce1e851068a1ad364cbde35a3e811e415942bbede443

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ec92dc12b61de05225b69871852210b93392f21ca9b58ffa63d643ef684bfbf5
MD5 74c2d8faa7f0bb42473b1e8b704d69f4
BLAKE2b-256 17f41a071308246e1f392126d39c24deab14014ab5f652ecd3203e4a46b355a3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f919b24c1b0197bde088375ff32327d73fe63482bb23ba9f9cac3e49c83e950
MD5 6f1468878a7f503625f95a4732c6c795
BLAKE2b-256 0b33e6f0651acfcd8b49868c7c4a743428409430f669bb9c2a455877f0ce1a80

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 31e462bae1057a2510e8de2262aa4f0f43848c7ffeedbe60c4169b524b483745
MD5 ee7835c39643e889027a553f13bd7500
BLAKE2b-256 26a9f7760f0988880653cd29c0eaaa6b9d81669586c9fda629c7a320f142f7a2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7b0b718f780a5599814fb58a0f0cfa1cd4e8e4e5a1277c63f925018c50e4be17
MD5 fc38513063289f1c9919418bf72e07e0
BLAKE2b-256 56e26ef9ddfe74a9005ba0e8ef2320690ca9586105fb0e1b0f70c3a72c3bd118

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202310221697830144-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9adffddde962106caa6806fb528435b20564d40c7004231ba9723ac091efa907
MD5 158dd5e604a815788060ac107d8c3b30
BLAKE2b-256 358b14d489019d7f2371c034e86413ca86f7ab533244f671a1276676a1414546

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page