Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4034ae3ab5ea9d9033d7d241eb606097441b1b7c8c7d1f0aeaabf7a913b81e8f
MD5 4a26cab842baf751f2d451ce35cf7f6b
BLAKE2b-256 c640e58414ccd15d6d878a5273b147a6ad9a62fcf87225fc7178dba419c80aec

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ead3e8bd55b5fe8e97b0758ec65b41ba79d61854a42215eb245d3c13b291e46
MD5 9fdea4fceb8fdeb737e6d3c756695afe
BLAKE2b-256 a4ea9e3131fd460235d460b0b34016388ad1f5e230c7f800416f885f5191d8f4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c4461653643e69ed6ad53220e9c4c08cb72cdbbd4a53be04f629dbc8ee820852
MD5 fcb28390fc7e479ba236b94b42689cb8
BLAKE2b-256 c163f6f55fbf6f52178c2b749ceb9b6379f4464edb8f840b496210a15ad29ac9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4c1559e2692347b1fd90e64636daa8e553ccb29f03c07127b35a4efd5b86e589
MD5 0f4b28600fc367cf84cf72c86d51cdc6
BLAKE2b-256 e9f885f31a06186d0918cd617d4620374a931eed5a581142beb143e5174a1c2d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e5ff7f45048aef7824c44c546fc0e5833df2809d7c79c2cb694e5bb3d102d7b5
MD5 b57b5f31a538fa29f2876c418611f0d9
BLAKE2b-256 7dbd48e38fbe9220a94cca48f4eacbf830ae0789a7f6b2cf69151315e5877d3b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f5c93f7082f66119bd37ef42cb364e32fe9702a8144cee8bfd3cf427dd01bc59
MD5 4c59360b2306f946a954aa214ddbb7c9
BLAKE2b-256 e64a3d5e665c00a6733e1994821b11e4717bff9c5be2224285e830b21197bdf7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 604f58e22232abf9ac26738288a7703a9bdbe92afd8909e710d0cf91fcf9e4cb
MD5 ed75cf23c591019c7d6b8930bd41ea15
BLAKE2b-256 8584eb2c7e8fa785f9fb1aeb2df1b4861a9ab37876484472e0479c9859dc6cce

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e8b2005704329f1091e412f928c9f3de18d0c21cb51284ad9ab0378b1dc9302a
MD5 89e061633b872ecd63870d1a9ccc7b68
BLAKE2b-256 67109a09990e4893067a677f670af69a111291042e2be30909a79d53825722cd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4213f6bd7e9ee29a8a69cd3e87de3f663bb2be6ec6e16370b6369dd190d40cab
MD5 fc6b902197eca819d187dfe508d68f31
BLAKE2b-256 85ae9fe3831e093064f5c1d2bb9545a2c2220dd13a91266e6bb080b620babebb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc875ba8bd83b8f8240ded3ec698e529ac4a18c750fac7c6e5dbc7faac9a7189
MD5 cfb0195c11f27f74c747505ea11b1616
BLAKE2b-256 4fb328c8c88fd629b73fa2f2f50ebc8dfceacc1ae0fb4586021391dd0d56839e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c2add3d9fc5c243f90ef1ba1f484c771d5bb4ae1d7441e3a1f8d52e28423b3dd
MD5 597db1ca1adcd4e2f97c4a45b3826708
BLAKE2b-256 a3cd40d36536ebb9c1baab9d759bf0ad84d9b47006427dfbf09133a30e31de2f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 494de65ecd2684daf43efa895116a09feefdc814db6a263f51facd70a0b4c2d6
MD5 74a94002762fdf234fe390a4c9cb67c5
BLAKE2b-256 ca226f5423b7562785955dc36b56943f36947d4cc9ba4bc0bd565c904ed5d58c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9cd48b6ace5d0d3b49741dcdfc74a8535b8fe5ad5ad3fc043002dd4c30caafb6
MD5 ad692a41d26f03c58686ecdac8f4d91d
BLAKE2b-256 001d75e442124c2d2cb18a6ed2d6451465d6c20c16c8df70242098c118d85cb3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 33d220348947d92e4951457f4d8e29f7ad7522e7605552f2599ccc2d8f48e3a7
MD5 89874e1f4655b4cad3acbf503fd26e39
BLAKE2b-256 b5caaec10ec7e07b85e3a2e7d7540c038dd60a9815a3c3fb5daefaf7d59a62c3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 77a0ea2fe8bdd4074c62984c8c9766b2cf81caaa4b63dcf2bc33678bc454fc07
MD5 b0c65e30ac3911e760ff1021c8d579b1
BLAKE2b-256 e88273eacd35fff882682607fe9f278a2d46f7ecc6e7e4d208c6c488bc94a50f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5ef4218819ca977c580b46139ff855981e6813e51ad35def7804090d1875c6ea
MD5 8a36fd8ee271e9de3dba4e859ef266db
BLAKE2b-256 a2ae5a6cc12c32eddb4e5aaf35421dc34a3ce4e46c380549097dfd5f7df4dc09

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 215beff02666ffd0c5b4439d6b2ee00737bd1c6625250228f9f38515f01b0fc1
MD5 cd14cbf6e54e8d4bc65f6a4ef1bd8165
BLAKE2b-256 1b208d5196e892e472289107911242248d4648b8c8aa3767f35a7a9737ff78ca

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8949628ecece4b6ab37009ad7af79891fc0dfc210d070b967b7e8febf86ad9d5
MD5 269d0a8fe5d9d5027e55378530ce673a
BLAKE2b-256 b0befcbc1ceeed57aa766b3c380c4e27d8f74bebe3a72fcf5e382c15290202ab

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df73ec6151e61468bf2fb5e3f1d1c44a3a421cfaf99721923c2a1a9d5b4774ad
MD5 b0d94d62a2cc92285c127d5047a03122
BLAKE2b-256 b70c66ae59da1da8792ffc70ff4ab419c03a4adb844c7dfc1698565636262a42

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3cea6dab5a68a940c80443a84cf4d0dabc8b6090741f87ada50cd71206fe4616
MD5 38b5f949d5dafba6e996fe2252c120a5
BLAKE2b-256 e1bbb5d1d3231b3ff0c02e29475d09b1d506515213b447302d67740d5229e47a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 61ff37f6a4f3428078d5038ee0b8fb9ba742c3720dd7df356024cea048805fbf
MD5 0f971be4f64058ae814f3f2e49341c41
BLAKE2b-256 c5d125330183818dcb4291db7b5aca2ff8117dcb3fb43a57e4596849cf2420bc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19e4cb48e8f206e2ae1ed06600ce1f38898d7cc415aaf1f1cd4da5ab8df87bbe
MD5 0f9d16f65df106056282727a7ff948a3
BLAKE2b-256 1e8eeddc3ee98bbba5ff0524f0ca58ff93c8af2e1ae3bbc3287c9b6d5d71003f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2a8c4196f5598a57a6c3141d48e6ab6e5420b133202b20bff919bdeba7ab6ab0
MD5 c3e5300e05defe39660c43a98be513cc
BLAKE2b-256 e09221abdc02da5138c27a0f2adc77b6826b0e37d649d46abadf5e0139527f3d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 873e436b22751ea0d8486e96f32e5772fb5e53ba39898a019d3caeb70a644806
MD5 c724d12bc37c260429d4ec3d51f7561e
BLAKE2b-256 4e02ea3da20c1aa05f4bb51761aea9e00ea428dfbe3ad2a95a8cc59d9f0d766f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311051697830144-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f822a35e6b9f5abf67b6eefef57529450a9ab608d34bab0cbb78780b8cc5c6a1
MD5 46ff7b425c3e54318741539627f4b616
BLAKE2b-256 84ce283bde260d4ab6b07c7023e1d6242b3ab4d6b5c03fdf0fb25de8e5ce64bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page