Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 eec60f9758171f5b62e6886aea0a25037ef28f6a1dfb241fdc59d57086fb2204
MD5 034d428ef6ad219ecd9dabc6d8a12b36
BLAKE2b-256 7570c532578ce05d1b5d07fc1a5521e56fd798b62233418dcf73ba45e7c6c088

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 57ac2d1c7087d44ce2ef688eeebe960a9c9de9755c0e25d746c6b4eb2c0524ac
MD5 8f064dbbc617872b8891506f2632ee94
BLAKE2b-256 30a2f80cf17e2a7f524b5129f9122c619c45b91aa3cdba20ca408ee6c6b737ab

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2220f095cd94c9928f722c00bad3ee9d6bd64b5472d7b49f1f95f4e44703801a
MD5 83f346843d342ec554f8c68dae6a67fe
BLAKE2b-256 87170449f1acfc3fde5b3cd860ed4f6631ccf6e4e039293b7bbb8cb62eecb9ac

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 084351086da4a732b3ed795691e33867688e74871f051abe233c6e38c85bb899
MD5 5564ee99e38c338fdefa201506101366
BLAKE2b-256 eac58b89917c6ad6f3128dddcaa0a8fe3750bf6775ab8526e0c64cf7fb502e50

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 84e024b6a3e979487723f42dec663aafabb49b26400dacb2f84cd5735084414b
MD5 59f664ffb33f3dbcab0f3cbbd6183f1e
BLAKE2b-256 fc48ed564ee4c7943a07a0a167261927bf176aa0fd05e7225a9b5513a41da6a7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7c8d998f3c98a26b34525be4b75cd2eed012a268acce0b0b414e13561a6e80cc
MD5 b4147c230cc3f9b5ca4a1518c37adb73
BLAKE2b-256 73ed16f548f3af6a11b2afb006ac6599870c29b6e5582e383664d8214b2306b3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 294eb47246fa22bfb64bb5fa4c24c433472aeb7eb38d87b67292cdec51d95fa9
MD5 9b83a4a21773bdaefc86ff5e35659508
BLAKE2b-256 23520c085189f275703fae808a2906036a2a42debdd29786e686e13a1e63ce2f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 41bd11153ac61f5770465a7cf904addb901122bf87f5b3d48869ec4696ed6834
MD5 88c22c5e0c689271f8640e4b93015399
BLAKE2b-256 d97d9db835d2e0d999a451193efb7357a6d93417ef3f40ad5bc8d2bcfe2e6dd6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69ec5bb7d2fe1cc8de3e4f0e82e594b30496d8599357fb64b54006a6dc00cfdf
MD5 b893488727dcb7e4b4605d3bf88131ce
BLAKE2b-256 061f74c4c85bdb090dbc421aec66b28d159620d1af8199b84cb0b84600b560ec

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 112b9d93b991612d187f0b1744117bc26aa34b34284174bf55fa17a8972de78b
MD5 86ac457b60ff6793d6a88495238cb63d
BLAKE2b-256 5d625f2982eccfeeef24277ffd467b68048c2db6437e7b3261216919b2d456f1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c24755439f583d46bcbf65e462e398167c29205ee77e6aa6dd64ad2c6af43f57
MD5 7794b1af82c25f7341148e7877b4b680
BLAKE2b-256 d37b8a53b6cabd75b20b2be4565eaf25325cb6c6d8331a60147080fff6c18f52

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9edd8fca26c039494813a329516173e592c9ef06dfe9e57cfe03932c5b772a7e
MD5 7ec7e805de752b44f28d31f845dc7507
BLAKE2b-256 a108f3ede462961f507b9647f5ab9a7312de00a7a8f0e23b147b6838b01deafa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 39991307d4c85725ee86ee75a7fd3f7779b3b8418e7e0d947af53403f933ef6b
MD5 91f3f16c5d65d830e272dc0a71d44354
BLAKE2b-256 91288bf9047f9900b3501b1d81e2ae07047617269ca718763974db863b650056

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7680a808f8b8d5072d4e097a0e5a62be36474790d943a9306603de95fd2faae0
MD5 2e537bc8894e17bb5f49420b37468a5c
BLAKE2b-256 5ae1e5fbbca072637cdca0cd767481cb9ec30a21c62c5caff5d0a72a666eb6e4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8b3516a2714a18a0652cdecf980cb75b46ca2f2015acb335a456e2eb46c17502
MD5 7b5a27204711cb51816fcb8fc85f3cfe
BLAKE2b-256 03031441bfd9cec13c1177792666556d10d64c7bb7e5aed5902979f1a66a65a8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a12d3d696ab1cf72dbd44cc974eb2bacfdb90fe04faee876af474421f6678533
MD5 e1a001267517219e45b919e815204fbe
BLAKE2b-256 0c5c83165f1b4ff51bc19f0896a5c66b2e7162307dc982708ea55574332d04da

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8668348508150241898d696a8c8fc1c84086343d3f1403f8cb33a3422d8502f1
MD5 bae371dba1334b653817b48ba691ebcd
BLAKE2b-256 df4e0c42406f057716d3e8faa6a8906218a8f14d4a8aa26e0c2e079f0bb3fb26

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b17c3454a9ec8a106da99792cca53686acc468932c8c2f8877c4baa280f995db
MD5 563ed85538c2fd165b23675d56b41928
BLAKE2b-256 5f98b6386fc237960674c4c948df641e4216afdd52c451306d4a5ffae12b3d41

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 042c5f858d1ff1712d8625294ede9b0abef7f36863512c7a91c189e9543d7b30
MD5 486abfdeb086f51b5ac6bd28f848980d
BLAKE2b-256 98e29bd92f6b26a30f1130db814b8954ec0b931d199ee0ff35233eb2778de807

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0675361c1a0a2fdf277588c8e0a6b4f73e94fefd49b7c2afc4534c6f4c2e5c10
MD5 8b350465213cb024fedf12d78574d552
BLAKE2b-256 5853c80179e8ef3cf88b736b6e6f80b5404e63bfbfae15d8b49e66b0e7973153

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c3c1938b1e6bab56767a7a414eb8e1d989f6ad88133de18303e189583b84b8d6
MD5 7fdb0ecd796236369c597da5ca6b4dfe
BLAKE2b-256 83979865313186d9840296fa641918360b18effcdd148a99ed0f8563629162cb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6dd9c3bf9dc81c012989b99452adcc16edb75fc1631bae964c527ce83583838
MD5 1e2374ded743fec9f1b304e0dd184471
BLAKE2b-256 60b95587cda325479833c0358972298faeed0e2b68438a265ad25a6d239c0956

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9581666ae1109b62cf7c160393fc29958582c8be7a921b9aecaaf6db0bcac21c
MD5 7f9092c3695af13d563d2b5426f2cde2
BLAKE2b-256 9d1723d8910e12c03a65fbe4a02a327625496ecad5eb2e8f83c5814b2d4d0f59

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0c2648b55f7a214667d79b615e56dffe847a4c566c0130c53c46ae8a89df18de
MD5 1ce538657fa87eea5a04a7dc1949fb98
BLAKE2b-256 febcaede2941d7a49324f93a6039dbfae52ca80b5d6738770d3916c3c78f20c5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311091697830144-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 160cb77135531e7ee52e47dfae3c1552ab4ed5a67eb2d374858547e6545a3fab
MD5 656080fe5df48733eee3b5b3748fe7d4
BLAKE2b-256 e89caf817f8170d692debd09443fe2f53ea4ba05416719e579267973471bb59f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page