Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp312-cp312-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp312-cp312-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp311-cp311-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp310-cp310-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp39-cp39-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp38-cp38-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 55f89f00958e7531e27f240c736663fe3d1ef9f16758c4cdb889abb8a11dca1a
MD5 1d1f1aae435aaa51795eba4cb5fb6b7e
BLAKE2b-256 430a0504a70c5d9dc8d9b825448777921de7c6f4efb3a89b8c5eab8a700dc834

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c503b5541864b6e3e8b2bffdc726fa94f95af5e271bfa26624f1b9aaea3dd3fc
MD5 14328fd65596ba08fcf66b594b28f59a
BLAKE2b-256 67b8a8de8f4ffc28935f0c4a612e78e430f6c754f86d99744279b33847d92508

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09340611bcef5c64d97a66a4b82fa1e8756a8b64af5bda602667db29ae4e39f8
MD5 1309b0b6e16e5aa67efb092d9b1d1ebb
BLAKE2b-256 5ffc1b29928fa2e0b51f19e8c2455e8c44bd7bceb688ad800befaec9f4f0378e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1b7592714de8f14996d4a4d710ed6eb24014366366f5facc0c077f7d61463f22
MD5 5b7a57e05b6503bf43495229e5fb6f39
BLAKE2b-256 8a4ee67f3df8d8b571b10d49db654aa386281337211ef923cd5653fd6676e9cd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6e24a8911a53843a410708a47ce17831ce9ddd4a6a13599f0de0e5c55faee3a2
MD5 f311114d0322ee9febcebf9c3de7510e
BLAKE2b-256 919c6ded12e8065dcb15d1d1d42b855ae209e8edcf7489bf685c6acad9b0b5f8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4e7ca330e882ef43d3a0921145fdb9eb6eec7752a4213663738b618f913e5630
MD5 b2182c5c183fd6d1e47b4f0d5364ae5b
BLAKE2b-256 b95735728aa23339f0f44aaf5e68cf2456b16419a11c568cfef537a191f996a1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ccbccf3667f0ac7e9bb779708c53d84affe8b65414e4b79bc711fe754a053006
MD5 ed1988e655318b44d0133ca5633ed1da
BLAKE2b-256 406a61f8bba0a4a749887f16f9b3e2973cbd0fe948b921f3f1a2f775ffa82038

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 16c2e4a03a3151494f23589cf3ff54c4c0907fa229b387ada25f091b6da8695c
MD5 8d498ae785affceb519a63e3251b29ee
BLAKE2b-256 fe009630ffbb7051490b4a4c4bf5f36ba3bfaaa34092b267de0d53a791b8d1e9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 52c40df7b0b0a659a8b7b493991f5a00ca98c49d74e514155eaf69b782d85ef5
MD5 8c6e5108d1d53170d8838feda2b2dc76
BLAKE2b-256 b265ab4d04d57e13ad3f239e95a9c36333aff5fe89bcd347fc564dd551b4bd58

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8806e738ca5c3a8b4cfc99cb7c93bcd834d0c5eb7d0c8276a0740caa417b7c1f
MD5 9ded89c70829bb374b923cf9df498e3b
BLAKE2b-256 3bc832147d0b8a1af8b8cd2bea0df678c9ff08708840c9bbf8788f334315c877

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a4dc698c35889f531d4572d5b9cdd89402c5d3b482ccee5cb64fd0f8dcdef2b9
MD5 61f6a01df6a0f97f0b89747e570bf986
BLAKE2b-256 7cfa470e9288376aa7828109a9d67ea938e48808662ca1e1c8d9f94fe603513c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5594ca7d3554a7caa62c8e62f98ebeedb8ce83cd6717340c50808704f2545ad
MD5 819713ff070c75cbd47542880382c177
BLAKE2b-256 2dce42d641059640c34090e4a953c9180736b66c764dee8ca00b02222f774593

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8c35d3c635960cea642c189f94f42091acd0528979399ecceea69e3d7dd850e0
MD5 0df0321aa352dd1ecde9d7cc7145c2c5
BLAKE2b-256 f18a615a89663a8c273a5b7cf53b44008dce55a09e34de5fe7a8d7396a05110c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c174538a86f5fbe48774ce4c786a5bb2ed3ea28e589894dd416372ba22bd52f4
MD5 a7faeacc04debb1e1c9362a4e646d470
BLAKE2b-256 4c21b16ba623e5bed1ae44e93836cb060e68f3a3af33228a3ddbb78a6b31234f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3d2720d33c7ef37e6fbfd13145812beab29f8e0c16789c42a5fc41e814c3d366
MD5 903d45541f683fbdc1c2cd02e6546aed
BLAKE2b-256 1ce5a9bce421166c65cedf869a2d5e35e706d6f14019c7433937e0e09f4cda48

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6e4a7d2144549130cafd02559fe6b95d7596dd370352b27c42a617e9a194d6df
MD5 97c0f918d932d334b716c81ba5201078
BLAKE2b-256 3d52819f505d526bd3bd4e670f2e3972c8db5b0076b22e6d46337a7a4c2c6fae

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed043fd974f0b5b8f8ac35cdc52ae953347f1bf0fdb6beea02cf6e85880d0ea2
MD5 1f486f088fcdd1ca70206ae43c406a21
BLAKE2b-256 dc6e81024ed4d7a67e37823fc3c2ccf08f0738e2e671a88ab5f6b2d3d37f84db

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ecbe75edae2b1e90b4ab6e6b7b5f9b2d3b0c2ccd1e992f3aa99e7fe0524ab755
MD5 5781059262bd9999213d9348d432e5c9
BLAKE2b-256 b63c23cfa3c590564825323b7c85b89225cc573ff3fb1f1213d7ba0077db00b7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d9e16588d44515d298148300ee8667c979394c73b9763c3b72a3e9cae29381f4
MD5 d1177c3d1f0dc6d19159355e5e8cab5b
BLAKE2b-256 dd3abe50ec8a9781dddd4d010d3f22893415986ac441de70443ae2cf39e218e9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b2f78400d1ac64be175a7a7ab9e48e8552655146215e1db52d2677ffc6ffbfc0
MD5 5d296fad3856ef82100a40411bb97915
BLAKE2b-256 8b39dfd279a55c2c623aa97fdbd28b00486ef814990f45476bf243180bb1480e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6d3a9a3c54e7c416fd1f56e7ec1272c7a93172f1da432534da50ec381050e32c
MD5 08b4bbd649084157795148f3be73a453
BLAKE2b-256 62d92aad1b1bad21d50ee7335ba2a337d286344c2fda7fe89c910e5a6ddd67c0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3fb859d6a7deeba07e9e949d3ba1d57f88091f59273893dc9a751f1de945667
MD5 829b4ac1af0f0e54b5e918bfa279c60b
BLAKE2b-256 d5f5cdb061af2bc6e1feab4cfcefc35da5ebfbbc0b9a9f2287364f404e094eae

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 34c0c1db57e893d15277535bda179d456a8f1161cb19d3baa4850830b73f6847
MD5 a722fe5adf47345ed7f0173f47bdfe76
BLAKE2b-256 66b896301263f3202a128986b4f1d30bedf2c8a1444edee598b1af3c8f4f40a4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e6ff0d68e9a9d612df8823ca0c89782010255d6b3dbba6f194a1935dadcc16fd
MD5 757a7252b214af0abd12959558be63b3
BLAKE2b-256 ba3bd75e67051629c2985a4f3a51864f3a2f35b9f64f411bc0783436c8108663

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311141699905169-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 737cb59b432704fb2376b04dddc37c2960a1eeb2546fdcbc9848cdcabcc28aa3
MD5 39d49d3d5e464e3292c85e875ce9b9bc
BLAKE2b-256 b9cd989a2abfd6d23e7657c548b6388077cfaafa8fdc4d334164b27eeada8c1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page