Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp312-cp312-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp312-cp312-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp311-cp311-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp310-cp310-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp39-cp39-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp38-cp38-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ba90afaf87a24fe1010aeac507d4ad0a860b86a4d603cd1682a4d538eef9aa06
MD5 981f137d9a2ca82e946932542fc58317
BLAKE2b-256 363bc85b840f1997114330a36e707ec074cb41fcfd8b186fa57bd2676a0601b3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2e7038741d32a1551d7397c3d0baa324f0f81eac768fdf018b2c213a56684185
MD5 bb30fb4355937edaee7a06fffc0df681
BLAKE2b-256 a57b8ce5d08778c81174809546d1a05d8cfe08a462586abc93935a1e97f9f547

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a41d595d39cf5c47caf853ff859a29ce11f577f6daa78eb1bbae7e596f20a265
MD5 83d5b0cd5af80cc56c7a7c8c9cd21153
BLAKE2b-256 40129a37b164ceb49d2fb05934406ef308b58bd94d4ffc2613ced0ebcd9072a7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d6f2dfecaf3e89b882d12410ebdbf1793590c3194421f940573f5cf58deb954f
MD5 a87bcfedb1cc0cb8cebcb2f488b969fc
BLAKE2b-256 51aad2876390414f9621188b6e09d67cb61c4e7559ae595a51271a00872cfcb1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2ea7d0b359219e1ed8004f3ab5a04d22579a73541fdd66270c838cbb52500ada
MD5 a513b9c05dc95da25a1a7132c05403ed
BLAKE2b-256 9d030f46203402e561a53af38c93263f2c183320890ce362a26a5295d1f1130e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 01babc5aa0426662d1a27ed464438816a31de07e3b1aaa2fad9c7b9f0fbd1f4b
MD5 1d42eb763a60ccfa8645e12651d35982
BLAKE2b-256 cf7c33393792619e4e25317611ba8ff24d0ddda8b8824f2b48f848a7013e535f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5ad96c75f46f3ecc8d04d9c8e275dae630aa1626ad1d208dbacea116a552aa5
MD5 b8546599b5a7d4d92d1fa39e56b633b8
BLAKE2b-256 b0a224d16fd6370761fac802980776cd664a68fb01fb6320a548c27ba1f9f5e0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 53928fe038004ec4912afb083ec184df1cfb9520bcfa2fdf5d2edc5d1f64ce75
MD5 52f1dc1756eb7c9e0273743ba169878e
BLAKE2b-256 337a371503a2f740bf75ed9df66bb4f3d1c9229b303b545e6c8b431d537268f5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 43dd3b804ec9186382d6b43d98bd797ad1ba36a0b710b039befac5a6a8b7f740
MD5 e7387c14a1d7bd75b6a37385b80967db
BLAKE2b-256 cf29025bbecde40f9b562822f7f07f36393905eb8d471816a29a977dd11d68b4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d0c64d30a65e307c5c14d76334ea0ee823103c953518d948eca95ef19c75c759
MD5 31376b22bb355f1ae7869bf432a792a2
BLAKE2b-256 14dce2d8093388388993f5045994d6f899bd2f068114d552d92a3d3d1500da6e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c6d5bde73abe45b80d7eca54e2c481ef7ec86088f9ea13833beae623d9e3dda4
MD5 c1d182c9ac71a29b3296aeb7c37ccd32
BLAKE2b-256 5653807c04ccd2b830d38564df62ca86b71a455ede5fb3885df7d8e2ae9daa07

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7392690650d7e5eaf2eb81fa2598da9c66ae59e7fe93888416cf433b57e4759
MD5 a34e7c35ce56645074a4041aad3e0158
BLAKE2b-256 48dd9e1e3fcf75632a89c609135f99e2bcae29c7ab34c5da85eadcd052f13776

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ffd0d1f80262e5c05dc4c64eb846a78cb103fd47cee6852ef71ff2ea00291307
MD5 ba354b0a0d6176ca1f59137944d09229
BLAKE2b-256 a1f0fa5c4318f481b3c32c05ad3c89d400337125b6b13332a55c244a005eb73f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a054a02d083cbc17c3c8161d65a5aeaa98607ee04f0ece27d94353bd3a4bce07
MD5 8db5514afc4bc6686d70f46b7a2b4a68
BLAKE2b-256 ac1e5ff81114cd9f27e8368a2440e8226f98949e25955ed615a1af8b15eaecde

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 916b172d266451bb031703891ac994f37786d6ddc9187cf4ee5d029ba2ac9b53
MD5 12cc169fa98af70428735b64624c781b
BLAKE2b-256 7a135777274c06f3ad5e15f15e74c0568c09e24db056af9803610d5568947478

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4ef2f9d4d1fd3a6a86c28b19f901a50e003b724720fa42966d766054045dde31
MD5 d0cc34715a6715d82b62746f9d015625
BLAKE2b-256 3f226dee728ebdeffebd5896dda40a074cbee0ddea56c0d42594c62778d23041

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4824d8d6a7f08164143deb80c2ddf85e43761c03580d73b14ebf4dc3e45d412a
MD5 f4e75263f53e04f621574e46f0a6ffbc
BLAKE2b-256 673373c5846082fb711b11228ab0bcddb22eb4248c044c7bab004faaa1c27581

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b447c64d2d402553beb26b44ab98319fb746cc41e986aba1074919543ab3cae
MD5 15f3bc218af636a41284f64018dbe649
BLAKE2b-256 2a4b6aaa971e70a5af5d2cc237e330e863bc269fbbf8cc6b0b4d3b8b8adae3d9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7760f62d0c2f30d834ec84ef7fccfd7e40d34d3949f78a6bebefafb125eb38f4
MD5 573b725479a4e8ccd62ca4c1dfd4e983
BLAKE2b-256 95b61cad1f6d1fcd3c92051bb1c12d9861611badab726ad9aa765c61bedadde1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bc4cda9be876d9fcf928e6392c9070bd1d6a16528bc7fa9fea22ae8fc0298bdb
MD5 acbd2fdd344d13f7f54aba3093d0f920
BLAKE2b-256 32d2a1ba6a57fd448ba0d9227f3ef56f0c6c4d01bdd9945f1798908939a33d35

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a1b469260779a01f99b29e2260ebf54456ffbc5de1c491033ae9ce403637accf
MD5 031324336537bfeb1bc8cc30fe9949a3
BLAKE2b-256 0f2007cb3fc97c78d228f6b5e2cb1fd6facf6ada71f377fff174fb26885eed74

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e84d83af0aa0d1fe07d7dc36a398ad7c02be4bf638a9cd0dadc4e2413128272
MD5 57cf21c96649dc5df333ce6e9d084559
BLAKE2b-256 8ea713d5830e4c6db8257357e00420c19de797dc7740ac659fb82ba885c09579

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 694b30386261fd64fff04a10ec935394a2633b6202c7576eee7a2f3d2aece58d
MD5 fd44b2a83d4e4d1f689d1005045cc5b1
BLAKE2b-256 2fc97b01d212ab85e90fb377a7a282e5ee8590a49879efa68d115adaa73b38af

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 422685f896b01c729bd3eb48a933d2e280c2078ec0e1ccaa77531ca46cd3c92b
MD5 3627569c9b5db06c9946d546e5ee4790
BLAKE2b-256 7ae8cfe6352cc5b6b360c3bb0e0fcadd8fe30f21b2c1b0feed4eadc8c705087e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311181699905169-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bbf1ca4b9f7c3b198bcb0af0d8249f3136e216099f16a004b4bba26aa8326626
MD5 7217a5614337bb7a10bf348a2babcbd5
BLAKE2b-256 34b74eec031edcbf76521dbd849abc291b68332de3fc7ecb61e4649ac980ae5b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page