Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp312-cp312-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp312-cp312-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp311-cp311-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp310-cp310-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp39-cp39-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp38-cp38-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ed3b29eabdad52cff64633936c2a1c0e7bc9c50e96f272e0082ace32ab5813af
MD5 db6ea9497a42d3f0ff57d99e0544f2b5
BLAKE2b-256 1615c028ee1092ad0f87d9833e91a6101cbc1f7b0f9148929227412bdd70fe8e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f9205b065a7dbf97e6e0a50fee645097c634ffadd5e7f044c2a5f9db933e1ac3
MD5 92496b726f7d218c808cde7772055407
BLAKE2b-256 b335aa9e3d0f8e3e5338192ea4d1120a67c7968afb34161a3dc11752cd53b998

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 26ec9fd27b63002a7c9b7c4c9ffb039476ae68b7d9dda47d60d5d0e61496383b
MD5 66c6f2a34fb56a5cdffb97533ece8c62
BLAKE2b-256 c596a52879c82c762004369e57b021cafe420081e434cd4d970afeaa38b46a6f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3602d739dbb9e852428bc3ce499cae152494da491b6f506cbda9f5ed551bd20e
MD5 92c3e568863de22106c98da738a82b4b
BLAKE2b-256 e7fed6bc36bd9d8617f52bbda2505560aa73e89b85781d00be00c4d0225d9fb1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a90db5513c62a9d4947dca22facc934e02cb75b280cfdc72aa3847a014404fa2
MD5 385f2eb0ae8fcd8225984a1f293a6e8f
BLAKE2b-256 852ab2399c1d901b78cf0b3a15571aa008f5dc68770d1166dd5edaf7489548b3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 72a88f772ef8008eaa718c51bb8d22c60cc302cd29cf0482e2e4c5001c770f2e
MD5 818e46f2e358ed7e3d0a8a65be5e2fcc
BLAKE2b-256 b54e58f176916f4639ec98ca6dd7252c32da3887bafd54699564793a9697268a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1365039d43939bb2da3afa54a95f7e9e6a8f266f27980537d90a055f5eb67ed6
MD5 1882988f6fd28489bd7790d429d49d28
BLAKE2b-256 35c2b0ebe3f383174d036380f27ffbc8dfc08a47e3315d4645fa52aee882ad4f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1085c52761dafaedb5c45db5d21a3d61fa6c0d6df35267fdfbad38ea612e0d2b
MD5 2618fc1056458d77bdf714fd0960ebea
BLAKE2b-256 99b0809c729c644d7c57274bd1ba1718c0ee49d90d2869ab04b8eef694ebe164

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9ed0d3e5da509786617e294ab74610da9c9b8a7b5a8d4588c306f1c0186c0310
MD5 2bcebf7a7e01efac47143764fbda838d
BLAKE2b-256 f7a2b4994a1a1b86d6707df4d660352e7aba81d3c5711389af6beb7c90ab8c62

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 788b1d5d2fabbb4f6724ec1118de62d01505115fdb3e01bfd4effeae2ac2fe16
MD5 dc6b891d33fdc96da4ead164d2fea91a
BLAKE2b-256 f68074f7a599f2b05077637fa46a701118187aec2249ba0a1071565ff5fb64a9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 53d4d43d01ba41ff132f2e55753c374c87a0db5cbdccbcf37c8b29f2982c009a
MD5 31c888c05d54c02365bd4dedf48167dd
BLAKE2b-256 d12c44b5a4dba677bba1dd16010e1a8d889b00c4f5e213e6f0663e5291db0b39

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e9cd60834467c5fc7fdd8c9208e214765a264b5e35d16aa945044c76cfb252f4
MD5 1012f848b617c44fb7d02d5972cf7494
BLAKE2b-256 bf8a8358bd9dc22ec4bcb128aecf2d622e636525865596bdf5be02255a42330c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0cac81665c65c676ace851610c6149746ccb15ccb945a908873f57b5b9bc13cb
MD5 0fe054281929ee8d8740e0f31f909048
BLAKE2b-256 0fdbee7bf1e031a06a7147f34b7722c6293ecb45bc32e017fdd05f29f848a753

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 323395c20027c2d6da18dca391235784fae4879b50103ba0f856cc821eac7cbf
MD5 498452ac3469259c5a6ca05d8cabd03c
BLAKE2b-256 7ce87c4852630bb2a01ef88d15977684a6a631bbe22c841c19204dc0468c5170

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a4f53cd24b9f2e30a61c236e30ed68b50c4c3830be7849bc0a00b276e399bad4
MD5 e78d0da5658c0834973ffde3157dac02
BLAKE2b-256 f85d79d2b01882bd307bbf9d6962413d5c6df9073ce03626df590ef3a5e8082e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5251a175343c158709c0a938d518e1b1c51d130c179448000b7adc9e9e1057ad
MD5 3749e2d14c5e4bf66a54a81588ed2c5b
BLAKE2b-256 e3ae49a80285f44475bd59fffb9a7bdb5b753e39f73e56a5b4d3935231365301

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09956b57969e46c787bb9c2f31a87ab05e328600aa434938ebff0a7e20346c08
MD5 196125c31d072efc29403a7de4a123ba
BLAKE2b-256 90914ac371bbe280c70b52cce4a8525b621a26c27162fd7ed17450cb2a546228

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b609b8651556cd3bdec479c45b72a425f5d5371cb34a251aab9b96836f87aeb0
MD5 33eff5c1fccfad963e91f607dddc84fa
BLAKE2b-256 f87dcf661f0ed73244063b35c3e5d1ebdbdc5e79e5131894ec6f105439eea2b9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 209102dfc36c754079adae34fd0fb3b0b8468ed70e1f4b560d79a8be0534e46f
MD5 e736375fb479aaa9011db1407a58c860
BLAKE2b-256 171adba7f82cd0cb0ab53ffbb8674c0a280db673caf982e5f6ad1f2aa775d1be

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d5bc1ab11b679532ec37da183bd0a2d5065895901703865803345e14a0611a72
MD5 3672a0ab022817a25d9a6c2bd4ad2b9a
BLAKE2b-256 d0a3061a7a1162efd80d6d39c4eb9301ec2ef20425752cf5e8433bb1762a9e11

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e3526d9f1e6e4ad19e920bcc15d45d3417201778b949ca487372ad241d1328f2
MD5 b581b60a5b704e8db91a1096d833e26f
BLAKE2b-256 a754b46a4d2bb8d0c48d2844d6b5370c69588aebdf0c04c49c66acb1bc801529

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4bc878807a8da7f838b9e758923269f1286ef749e1bf59f45e9641967b45b3b9
MD5 494867950abc43d1f816c2493038a0e0
BLAKE2b-256 4d36a32b97d6dbab28f385c205fa15995c58bcbffe605595ed004119bef0c9a3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 33542a9127e2b0dbf1b38d5c38ff218a86641ae9a9f62496600d0b5b2a153214
MD5 97ebeed3a034deaa86eac953ca15bcf3
BLAKE2b-256 7ee324fe15ec1353667fc6832503eaba3dd2a9a96ce0eddfa2d771fb1ceaf055

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 acadb84dcbed7d3d1bb9bb9db392dbb29d68b9939f87a2e32340f7ad5e3c6c4d
MD5 9c0a4ed2928b63a9417e13e5c4b8c161
BLAKE2b-256 f6a09f504bed67f0d16d1c474730c4f9c8984276b1bc45c8e287ecaa2e55ee42

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311221699905169-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 756cf80b12ce86ba65e6f44f4d70bb4ac66b7c45cd6f68e44c2da051b78e249b
MD5 f99ed26e538344c7e5af087106d14f19
BLAKE2b-256 4e7dea5c5eb433f91428fa1b5dbf68d35229a6e903896a560e5ec760e223f5b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page