Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp312-cp312-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp312-cp312-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp311-cp311-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp310-cp310-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp39-cp39-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp38-cp38-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 fca7e884e789ad86add1065b625e1e00391cca0c9553b90563611023a0128c59
MD5 ef074a20beb42dcf13a206d3fa715306
BLAKE2b-256 b847fe1bcf5c3472edb7a2a51af802df9a2c8a359f210e53ffc14781c227132c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 81516207f62b86cce7d52fda0a11241da976dfa7b70536eb26e79e4d95a2194c
MD5 2846a0379b03cc02196fd4bf8ba285a7
BLAKE2b-256 6f40e41c9f69cde3509f0eb1de188f56f19363c84cdc2d0c864ac6b3f1fbe08c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 648a7972ef05249637fdf25a50fff4945e4601f77decde3f66bb026463b69b89
MD5 b535369b24931fa5e5ec53492e290972
BLAKE2b-256 0f14b25e1bfe7a3f3239eb89d3e0099027a6b7c6ba766a78bd3f90da2e4cf2c6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c3e93097edeb39d25c58e22784122963cb65159d521e2a30a05f186999cf8ca
MD5 89f50d5f1e9bbd3f7953a32e302bb948
BLAKE2b-256 06b69fdbe5d5120d40c713967f7cccdbb20e1ddefc5f3dbe5b99ef8978881ea9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8043b4b7ceab14377b4567480a38803d30e26602d4f588ba47f80caf78e1651
MD5 98776d8e0069b29887739f25d7aa1ab5
BLAKE2b-256 82c5243700badda986123e4e745e30d8434522420fe1a9ea4d61cfc96ceba398

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3d3b6b7265f13625185c4c75bcc8a6745042a1cd313aaa6898d023e8949e68d8
MD5 14f207cc6ffa444135d25ce10bb044a3
BLAKE2b-256 2e1fe7749a645fcc1c5fda4bacafffcfebba140fd467d0a5dbb8b14f87545416

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a84d05ba241024b2fd9c48343e5cf77c528e4bd3c939a9a1137a54111933c69b
MD5 aed4c3f25e6a60a333b26ea80bcaf58b
BLAKE2b-256 a18270213f0d7b386f41eecd0ad5e7049685d4d4b7266e6d07e6c641106d6006

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d9feaf07670da1e299d69ebc7fed7aae844653259a0bd67fafd6a0bc6d79ab99
MD5 7cd182ab37b28f887b5255da6d9996b4
BLAKE2b-256 baf70a6bfd308f8ea1b8505ef8e328f1a8b238434e3a843bfdb07588e8646cb4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f115633b72061807162ae0d8110f613024b0d9d841967d63d32b6566248ae010
MD5 6e45f86d7310037b4cbebda7497825a7
BLAKE2b-256 bec19bca780d423baa3060ea617054e121e2bfa91858cdcafe20ea99fc09e384

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0304bed4bfb522e778d0969852770be8715a20668144664c937b355271d1c31f
MD5 8225ee71cfce5168bee93452202fc8f6
BLAKE2b-256 77d9bb2b90deee2a8003c8b1475c59431a69a25cc314376178f4d5e4077ed3de

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 63b766cbabe32daa208f24fc21c572e536839cc691fd642d0de4f5fb6a4754d0
MD5 a0bd4d5c0168c14f54bb623f970559b8
BLAKE2b-256 4b6e8733affef6ff3f50613e94d2379137d0a914f66ce73155cd5bb5a4080043

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0be31084b6a7d7d3b74047213aefede1171a181a2f633e187b47dc0259e07a8d
MD5 701eb820ad6f3d212d89a5a50f77f120
BLAKE2b-256 54dc836af053d61ded84cade5d91df83bed1570ed52a2d0ed256adf4c2ba466d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3891c9c30646dda4a1719e5fade8eeb64e450a31c92a6f475d5094949bc944dc
MD5 37aa212f166ad865aaa8dd11233fa780
BLAKE2b-256 9b094d5c4ab359ef9a0d74149e5e938a1471c298baf67dd8f667f430770ffb71

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 17c6e9fb6ebfd611d07823d10aa39fc610a6b7575c09d27925f523dafee27898
MD5 e7765654ce23bb0f4b5689ed32d3bd26
BLAKE2b-256 a821df220d0f9d8d3f94166986e2f9e00af2cd26c8e9e07a2d04c4756fee672d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 97690da7b63120ff9d3c9198578caf1fee4217c010fa60e3bf94d97513010323
MD5 1cacd8fe3a0ddbb6bc8d0569df9ec6db
BLAKE2b-256 6014e6c6d2b07bba25583ae2a2fe69c3861a366bab6a953149bca214f725e3f9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 eaa1b1bf8a07665595104f4ca05cbbf92ca6d557d32aa3d34db0c8d69e163d32
MD5 53867f4417a21d1fd2f057d6daa89704
BLAKE2b-256 fa6c590660e3cc0fa2dadf51279302e0d3feca219dfb426eedf7273c588abc5d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97e538fecf2b1391b9a277ef52eae10fa6804e2b9b561684475f5f4a21a7faba
MD5 47e0a7f47bed6ec55769c4843d77c667
BLAKE2b-256 595018c51fa65f844205e7ce2e66a858f238571ccde73f8f9cccfcec6d8fc82e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 001b5349c1df2f46ca2ab5fdb90f99001d09d120eaeb7e60609abd15c9bf0099
MD5 5677c15898fa0cd550688099d9d72821
BLAKE2b-256 33015dc114447dc552aadc7a6bc21750dcbe96ac861a4e79bb177b91d76ea7b7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bef91c32cc1ee1952eededb47e8dee9229e4c3d77ea5c36081dc1ab60a25c48b
MD5 d2c8a12863a54c7b9ab0ea557e01809a
BLAKE2b-256 4405201a3be5279fda34db5b6fa3608486be34766550a0bc073c33be68bde991

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f1b67c27a01f2657a0ac4cd660ca603765869f2adbcfa0f3e4ae0838f61a99b9
MD5 39e901fb65a89c215dcf8778855cffd8
BLAKE2b-256 de6450a7fd9b24859c3c489023dcd0e40a640a081c3d635c8397dd4a3eeab096

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 47e0c8ddaf50206f99bc6dc43a4c5224a32dc8ea662546ca7f2deb01f9379cc1
MD5 8a831872aca555493aba5274f6a090f9
BLAKE2b-256 321db61d8eed399764f9b83f4e297c7a85a798555f2e5fc6c83f6bd78b74b5c5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 54eed1162c9869da4f1dc386b38960bb999f48a6889276b11fe0d75b22e2d8fe
MD5 dca7620c9cb5ff01b6f1f4122288ec07
BLAKE2b-256 afdeb2110fd1f1986bf76be21f3d3d2bbad937d81a9f844cb217eb1b4550c068

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4c346ca6b3624188341ab9dcb28e07b2947618780c97375db76ea67cf209ed95
MD5 b3e8b4fc4e10bf69eed72a90cf4a0d9e
BLAKE2b-256 d3e7adba2b036663c8632f17889711d7efbb784b87f5233a40f7c918488cfcc6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bb0108938a3e4764e3dc2f790f8bd099bb1fd5b86e31858213b6e03da09629d6
MD5 0ae65ed2a4fdaac1ea151c38cd72c62b
BLAKE2b-256 759b60be18c96391ec36fd67947034b367989588db8433845e2c626c3aaf3a53

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311241699905169-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5202da3aa4d6c462ed3428ce12c41f6a299f614266e04fefcbdaac3e8e1a5af
MD5 2a9b223ff14011d1ab62c52ede4a221e
BLAKE2b-256 5e941b696259d0370f6fe8f8d46cbd65622defff9e8df5cde0e91a0679fe3f64

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page