Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp312-cp312-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp312-cp312-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp311-cp311-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp310-cp310-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp39-cp39-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp38-cp38-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2ab224b0b7135d76917e310f5673fb00d8dc50f7d0b8ee9cc1798aa9acd1f0ed
MD5 6d26303ce9d236bb19adcec554706f22
BLAKE2b-256 714a17e0fe0862ab1604a19f2b56a649f1ebfe5422f21d7c3a43ab3418a2af6a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 366138e6313c217a00fb1d633f90b713fe24a9969790fce6f40b234fbac65a1d
MD5 edad95dcf1f5717e9630871a40df53ab
BLAKE2b-256 f9cbf0220738f4ff35ff6cb6269a45c8ac7681536746c68af19196566655b63f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da9e31ee3e6868371cefe3cc81b905493bc1c247da198cd410bdc8c4a797defa
MD5 c2d0dd8d29015cb995fbcdd955c166c9
BLAKE2b-256 3c2f8d99adbea8dcf175ec0218e52dacca725a3c177dd106547aedc3a80c861c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 14dd8f7edbbe79bd2a40fbb5e25ea7e9ad78e60f1359a47fc57bb02726011a43
MD5 4b869fb82f00b25cb4f8e58c67737bf2
BLAKE2b-256 42263306ecd909e74736defb2ea89ee4b92ca94aaec0eb7a5ec72a14ecf86e6a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fe925db0d7c443bf625e21eb323e6f712d174ab68abfc75f49533eeed8444d70
MD5 18dda0f32823a034d2cd78fe73ff3378
BLAKE2b-256 aa8fc9b6139ab38641938d2de4f0fdb9680959705f11ea3e3022137ec5f93d9f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c10c23e54b82e1e287346fe794d90ca1e8b4813d00b3596ad686c49d13bb6eec
MD5 6b309ac54151e09a5e75fdce097b9200
BLAKE2b-256 86d3eff3d34dbbbd4e2104c45c724cbaaefe05009f278bb4414ebf53a4108598

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6978983fd460bb7d0dc4cbc3c262f541a6492ec51e87a09f690ef188d8c01f6
MD5 72eca396087b6c8e4f7cdda60a2b2e5e
BLAKE2b-256 5a7a40d3f4e6892c43a0eef25d69cdaadab6a1bf2d256f11ab64c951b5396716

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6f31ebdbf8d60a06349cd904df9e58213ca9ccd470653e6c647c81c2bf076c3b
MD5 0e343dd4ff240a5a6731f981dd9a367f
BLAKE2b-256 1d0d1d072be02611d0c61bb7d6338b8ced4ff15348703fbe5e7faf8d69c80e7c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb35805fe91e0fc4fb40019bf124407351f8649dc2fd400e749cd77b02ba1461
MD5 212adcfb87fadfd317d6b8663ff6a7f9
BLAKE2b-256 571813b7cb93da237c73f5e9ad0c7e190b1f726f7ab48038744fbc906ca00475

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab8cca244f7d0fdda061b938e0815ca56afa95658c153f180f69010726de96c2
MD5 ac06433622118d21bfa34d33fcdafeed
BLAKE2b-256 8c5187d42e2d40b35e9eaf1bc4ee63e5893eeb8c26a0fa8300022b444a71e714

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 398ecf02076d4606a11ada59476e0b0fed0b29373f3b94eaeee1f2dd092a88b3
MD5 76c07a4b0d56b97351d1c5d812cee966
BLAKE2b-256 447c2c7dd0972886e58e27e431a1b08d2d84d7b9f3180372187959919f13dbd8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cdf9668c13b18c573c6139b882ceb93e97027d44ce30b4b621e24145bd7f4377
MD5 affdb0d7bc20c2f272fe9296bf465c60
BLAKE2b-256 eb2dfa7a3cadc366ebf92fa97ba63b49d7ddc4f31ebf8c9e185f19c21b3b4584

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 14ced03478a6223463a63aca1d4910c917e09fa84012ed6117bc8df63b23a7ad
MD5 9abeef9ddb5dfbd600f13a1cfef0abd4
BLAKE2b-256 0521e357ff5adf2222225cdf25d5a98f55fd2a9b8f4a32ee72f3e7bdc6350bba

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 facc5af2501034c04b5a97ba2ed75cd546473a7d471535fc98457e03a5ea9c29
MD5 b00bcf0d99db563eaa97079cad915ff6
BLAKE2b-256 cb8187052abc728f10416ff8f1cd49819dda3fad75a8691e500e0e29b11ed4c4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 89b1559392dacfec00b2f21188ffe976254b99d515f67a9396ae26c005df5799
MD5 643a6951adf3a0895769cd976fd0cd67
BLAKE2b-256 a5a3a2e5014372c70b8380728f638c59cc624134bbcbd402ec81d411299b143f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e406051497ce39dd0206aae9d7d655cea33eb9db65362bf25351bf8cd7258e88
MD5 fcf07b404bfeed0c0c7c23969932d352
BLAKE2b-256 9a4ca7fe1d6df1c49b0851b11b36656034aeaa2c719312aa81fc454ca902cfd2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10bc43ef59c98b031c8a1ca624c9b4c79eb1a8338948f5b72ec287467b22e5b9
MD5 32fa6f6b10fa694dc619ee9c7d01a0de
BLAKE2b-256 ed953327634fdc58de3a3c8666dae8deb286527ff1c22805c945a6ca3f4cb1a0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4a3ea5ea33b62e155ddb531d6b0aa3eaea8be7ecf89babaf1e2772938e773b84
MD5 48f5374c3b3d601547dd86a3067fb17c
BLAKE2b-256 dc23b8cd5c7625b8c902c0a8f9ae7ffd2f29896efbe992903040032744ad5c65

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b396ca3e062fa7f2af9d45237255f2fe5a2cd46cac35487886439df78df60dc4
MD5 affdfe74fd267c3309dfe5cff186164e
BLAKE2b-256 b02ae573492d396de2dce11bc5b45b33bb7734c4b78d09d1205f86b2846f75ca

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8b36d2bad7c9a90128fdf9f089271024572a81c37033bed7ac5c6d01dc4a2978
MD5 464c6771d59e7555255acea66899fef5
BLAKE2b-256 feb1389a8c111ab42534115d39d972d34efd43d2f765889f5dcbc23140934cfa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1b9069500d053a5f9046a8fd6b35f054e01f9d3025f239320a3fa90cf86ed891
MD5 69c2a3e15f664d10008507cbaabdf693
BLAKE2b-256 1af18d92a6d3c2de58ff7021a257ebe886ae217686a7f226bb6ec9380b716d65

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ae1f1b8deb0e2c3611639e08c7463f437c5a0751dcc1a00617da872a2f77f93
MD5 e40a8c23fab93775c8012d81be7f6087
BLAKE2b-256 f3c5093a4d05bf9f403e4109030efb1d4e6dd1890465bd44ca60b80273305f4c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 31fd56e72f3687625c3b1eee0da19625962f4b44c7a6a0777ba9a1410377b032
MD5 496e109c7406d9870b1e4af9d0d3f798
BLAKE2b-256 2e9f79cbaff055e34694d49afc5b5e242fc3e37561f83d070fcb2db700ae261e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fa5af41456fbe640b64cfae0f433422e068ae4a5af78397a041e18d7f7065378
MD5 96f809e7968e90d745973cf78a4eef73
BLAKE2b-256 f3e8871782712e57401c6093849f165020ea695731f215019f64be8707f31d71

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202311301701192974-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2ae43db90fa0caa10af6ddb14d9ecac1edddd1047b56cfeb22c7f1aee76f6de6
MD5 1c281d9d7217edfeb968cc6ec30f8a5f
BLAKE2b-256 5fc0728f42e9ee8432abcc4e3c64ee66746ae85613d2a6e59770636df4eba0ff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page