Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp312-cp312-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp312-cp312-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp311-cp311-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp310-cp310-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp39-cp39-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp38-cp38-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e966b81cae7ef539847f946fb7451699bca66e1e52a6356720b49935a480ad3f
MD5 667761a77b56202af8f8f11d442fa486
BLAKE2b-256 d071128c73a11d5fcb02dcb2b14824118fff8302235f05d48bdfc455f0002624

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1ea098e5b0c4d58de27671a9540b78f0431bcacb1c0f8e56be3daeb84cc5a25
MD5 e51f0146ab8ab49db00b361b53ba88ab
BLAKE2b-256 3bdbbdc39e1acb83f0066c370b8304fa94becc9eaaeca94b7c832874b8bbb960

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 17a7e36fc002ba0ee61e4c0445e47ef1c6756b911f11c1097d15644f40c6bd45
MD5 42af588cf7c32cebb1717369d5f90d87
BLAKE2b-256 84b8ce4da7d32af31ac4dbdfe931f6ebc4de149f772e1eca10c148a6b36d08a5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6030a12b94c7979568c65e73d38a16782d2e190cf688350ed8d7b87bfcf80615
MD5 5258c5f0b884d192e9b6c11780166c02
BLAKE2b-256 8399e0f21965e31fc5d5272732dd2fef75afb13c8d16bd95a5ed1133405969cb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 820732818145d42a63c5ce8a8f64ad59944a99ad40aac68cef64863e4fe17ee8
MD5 f62921123f7016f1736f89ab85024ada
BLAKE2b-256 83eb877bf0b77fb6695176288335b607d37c3c6ee6d6c3f406bd39854d775b44

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 172086dc5c066bf7762c1e688d28d30499af5b6571a6a7210d6294ff38274b67
MD5 ca8b0377e6becaa9af58a84f616ca97a
BLAKE2b-256 7eb8e80be7929f67ba3c9b11628c1e307d604f7a42078a83e678fb8099ff552f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 da7ca43bbadd072c7043f2ac46d65c778d6100e799c3fc42d403dcff81f6e912
MD5 e02fa32850bd5bdc1a38416f76249208
BLAKE2b-256 83a53f0a8be7b449de49591e08246cc91785a84677eac2ebf585a2f266331fe8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b48a60d1a35a344d0604c639304ed5710ce9dd5e857ff5ea1f45de346bcb088e
MD5 1a8df75818e4321b6728c0cce04d120c
BLAKE2b-256 ce6747a864bc4dc2abfce0649d5a7d370a0f241009d515b1cb73b220603abc59

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 33a1c8e8c9f8b2d391127c46fc81ed0b02b65fe43ba7dfe55aeeacd2910d1727
MD5 226c3bc20a5bb092528cdf4dc3916d93
BLAKE2b-256 851448517d9b5fa9c9b548856bc0db62cc543d071dc0b59dffa85525c85d77a7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b486b22f78a4e6698022a6aa928d8a55ce7037f17eaeae16c2b8acc4fcd2097e
MD5 9248b8535e612d13651fec0ceb9a5c3b
BLAKE2b-256 e94014dd053ce93ae568f9ad5fbfb73a2351e20c8f80c3f7ea3bb42ddbfb8a89

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 95cee58706f5f908d510a3f44bd2094d9a00d125d6dd984e8ba4344efb2fdeb2
MD5 86b9b65e2efaceb6da8c293295927cab
BLAKE2b-256 a75a07d774fd9c62434f966de538f4e705d485a34048c8ff0f0adceed458910a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a90a896f3fbdd531a1e2b813d2897efcf47a03f04e6c7022df535b16afda5967
MD5 2ff2939bce3bcf7ce747669e643f0ef0
BLAKE2b-256 e94429df1d29be409db2ea3013976fd39be68fca617c79ee8370cb1ac6bed59f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d576c18d7a386bc11fdcd0060e3124f3ff97e3dd8bf77cc0482c02831c4c8939
MD5 e040e3c7480cfcfc8e06ea1ffb4c6e65
BLAKE2b-256 c0fcdc5dbd85c7378c2550c3dde48845845c56fccea4ba2da792a7dd541c1691

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a1f16b9c7f2622535873b4b8aabe7e943954151f3f878a196835b46ea33ca3dd
MD5 654d090bdd104b6dd9d9a5605e61fe6e
BLAKE2b-256 1a5c657a4c3a0e617bc4c3ff21b248bff8d5d2234b513832ca57adb2c63930ee

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5032c4fb58490aa91082768c74a69e5faf58387d1a0e174037598dbca556761
MD5 e78ebd78d9f0b412bb7491f6c4dbbaf2
BLAKE2b-256 8c3c6185adc053f3611d5433c3e0e5b962520d3db775f064b01cbce515a72f60

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6be5fb7e93c3e5637253a7661c17b93c47fe9ff1c37d47a78ca2e3208bd47728
MD5 faf95ad21536358f3f206e809d2472b5
BLAKE2b-256 ae4a91a4839ab82393f70a2b8cfd732cc94921f79f70f30549d533e2eccb5169

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1cc9e8eca55b591c9772c022b68bfb49733fbaf5e5cb0678e73551fc80863006
MD5 f8807a50a3817f0efc83049a19f8cfd6
BLAKE2b-256 4d0d48d0d0b22bba2d07633c7feb15145de9524117594f2bfcc3abc6949a0f99

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c9c1729b61905a2b53ba4e8e630d306ffacc33d918a651d471a843d99cc65710
MD5 f8ba0fcc1aaf359dbe2dff2a481fd5ff
BLAKE2b-256 d3484b11c713e23347a5b86a8b9dc5fb06132cc2d4bd07dc3fd3a655a66f4204

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb2b8b82ec99c346be9c5acfd86a664918562590f210ddf2efc2abcb05df735e
MD5 e93fbc5ccfecbe6db181fc1a6a0c42db
BLAKE2b-256 b26baded9f226453fbe9b423a28baed16befb76d556081dbf0a46861d5d89a24

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9e74b8c9109f944e1f31038a9b52a47f64470f6760a12f13e6bc45824e760c66
MD5 e3968605d7e505cd3a3e0c7d1a85fee6
BLAKE2b-256 b3c4707592a7f525f69bf89626420096c016d8e6ca25a352e42bd3d4eeefb701

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b1f331030bc36ea410ebbb186b8a32c26b1d31ab7d02a48bd6c8f77d32107c9d
MD5 5be87cf3f0dc1738311e6eb1175e999e
BLAKE2b-256 2ca3b16319cd0cbe615a464a21fc20a1970f143e3c44372fc12b25bc288f120b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7f1550344541698c6f7c6c6fb7699c292904e59af778e10418cbd90e7dc6b03
MD5 5b038ee2c454ce99b11d2649fce18630
BLAKE2b-256 75b0d34a402edfc6d673f69a746a3b6694b8a1a1e06ddbcc7402e907ee45185f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f03d4835f95e89ad9f1e0722b2b15c179511b526ea0af0fcc8f14ea722cb9256
MD5 d5e6b6c45c0de5a464b361b28dd33aae
BLAKE2b-256 c3764a481d151ecba727179e36eee46094d3996248f575054baab4ac469943f4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 abaa84aa61a4c976f2e88f96f9d913a42660fdad28b2e5ad60caf5a0858022cd
MD5 3b28e6b2e07107e8f26f7945cdbb2bd0
BLAKE2b-256 25186049923a668488f5678e84f293e775e3e656720ea2fa696805327c0e487f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202312121702138486-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec4ba3d01ef36d1cab304886641181f59106d7bad0bec63bbcefe4e415728a79
MD5 d04e4af7a3c962562ff70d23506ca72e
BLAKE2b-256 21c6824446d6dc0296cbeee6bfcc45bab2e0851a73c604f43b0561f6d07be749

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page