Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2fcf0469da8aa858a91ca30817697ae3829d5a40e50ce3e95d175db32457440b
MD5 c8625cdf969803c7692a6fb94b264bf5
BLAKE2b-256 90c7f3e6ddbe29e36f2459e73a3b9f14c3cf03e6c405c1cc4516312b7ebb84ac

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a1006028f9e3e91d16f661ef122b2d76a34f99f3273c9d791e2ce59f02b126ab
MD5 ca147227b5a91df863321bca0f0eb374
BLAKE2b-256 3d3505c51afcd77de63ab97aa0ca3a7cdea5d5e809d3f27a9cea70924c02316f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ee40ac3be0b3b1d39dbe75662295b31d08f927b33ac387763cb7272ba7726180
MD5 b1a2d7626b878d5c7bd779b81790e3e4
BLAKE2b-256 df58d9801ed77bb8598c8f1d660ea318831ebd7a3bc7940773ab0572a93afa82

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9dd1cbd1fe60568e287f9e6b68e3e043005c713318027394321d3fc987f093da
MD5 2b0202ed2ae6a026c067ec4aaf38e85d
BLAKE2b-256 5896c6301241ea24ecf6ce210b14fe813e289bd4f1adb0c1ec87e4b2daf2978e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 083f61782bb2b14152ae522e68f3eb8ca00853f2277a1b641bad71c7dcab1825
MD5 520c6aa8bfeb583762ba393d5a40a947
BLAKE2b-256 f47bc0ceb9f8a6fe49b88a6a763100214a631b8834dd98273c7fcd87de010e01

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 156282c553a6034ab72659a8c32429789408e0f546f891ebcf4173f420b0f4d9
MD5 966bfd607779330ca80aff7100b8db6d
BLAKE2b-256 c720f52cd80828b0cb64ecf7edd67ccbf7194de6acd5abab9cb6c02b0b5c73b9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 70d141f414069f41401551237f0ae2578c23fdcca942def93ef1cf4f5bd08701
MD5 5e54747a3b9b41de017bf889f65cb17c
BLAKE2b-256 041383eb5122b7e52b88908ced1466ff97a2db1904e68aeb8eb928ce97779d55

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 75124649aa808551c66815a48fd155197a15357a8bf303c1a6f1fa44bdf57c3c
MD5 cce5da34bb587838be2c281841480535
BLAKE2b-256 a4024767163341cad6696092d2d7321db132e9eb1721b2cc4d326b80339e59df

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e389f49ae3bac5ab82781157865c3f9f2e589b04216b333b088be5ebcf89524b
MD5 2edf23f3e37b546cf56f509f7fa4dcdb
BLAKE2b-256 45566cd585481a70ce8f6f77ca618d82684661a4a1880842e0d588732ae11a6c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8b3c035fbd687da6223a980ef4ea267da6dc12f75a99119191e87148a9583122
MD5 5aa997ff553b627c71a8f89f96a321e1
BLAKE2b-256 ea9101ef9e60d828f32187ebc1c5aca1fd6e3ace01dc62af7486a69f8d71c9e0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8d8c6557c6c975c1eeae628d8501929ff92de0cbd9cb7f5f355a984f52440219
MD5 e90ff898252a91ba7a3dfd5771c799c8
BLAKE2b-256 e1201d70eaec3eb48eb20034772e92a2b2d7ded88895974de5a9670c5e1510a1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8352b3cde99692ae15271068936b6687b73815677c82e53c7b805e0006262dd
MD5 5796ebb5f6dab5a8be5efe7754cb325f
BLAKE2b-256 07cc6a8a38dcb7b1b448956238032663bf5e8cedd172be021df40d78e95c4bfc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1706f60c04b9a76825996d7b6d28fb344d16c26bad3dc0a1f13f0fc133f7f87
MD5 d9775f177b730d887fe17d1eb9ac7271
BLAKE2b-256 bf6651aee6c9722150d9f1320ae57bc0c1675e3dc73112ab05385b4f33ca0208

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a2bdbfd27b96a9c40b39ed236f7ac32e0480b019661413a4c6d4dc37f7827521
MD5 cdfbc839dc4a989c702b9d99cdca80c9
BLAKE2b-256 02f357afcf68c30650f20e9adb194c8470ab1b6ff01595d72d1832856dc413ce

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 23222bb8a8a064606f10ca967ff8351d158ab1d6bb321978a5f702a9023fea97
MD5 26c1cfd500cded0bada4fda8a87da6b4
BLAKE2b-256 3a6351fb3dd34211640007cf48ec0c26141497f5324b07002b1e7fc2a60634c7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b78aad7a6fe917458b606566cccde6c6ff9f4e32a1a08e3558f0084a10c65e13
MD5 40062b581bcf89942c95251719176ebe
BLAKE2b-256 b9e66755f11d0c95cde0645e86da2c95ea74e5a5bb095abd24d6d4e686e15026

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 858b630454ce929e7d16eba0fb886eb841f20a0c28881c796cf9833afba7f2ec
MD5 331fb4aa11138f07797e98c5d1819610
BLAKE2b-256 040986e41986fddb9a51afbedaa0c45f86acb8772b94a7a735c7bdce94b599fe

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2c1fef2495ee4b9db2ac78a3e780beac3b5b7048ca96188b926a2b19bbef54f7
MD5 91a12e6b894ff9221f712dfd8fa8e3d7
BLAKE2b-256 0fdeb183df39f77dcdf33bef07e0bf589a1761101b859e7e78493771d5a8a7bd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9cb74df9cc14257c1f3b3f32ed45a41e22378b8899e54e482a735f2ecc6f15d7
MD5 775849cd0df5dfe3f43cdde3c567fc3f
BLAKE2b-256 6c409576d56b77b0f6bb191ab02630ef91e80412ad7acc4f0cc31cf94a1efc75

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5f845a8ede272f7f41e24ee47938e460f432a076b494d7f05e08802343f0e38d
MD5 42acdb9efdd8902c7ec6ed6235b69d87
BLAKE2b-256 b5c6be1582d9afbeb8540aa036f1851bdbfefa4d45eed6fc428265c674d9f5a0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fbff09456239a2c9fc8a89582e46ca129f0b57aeaf55db52fae35cb9025bbc65
MD5 ae80a75e6d3bcfe3cee38964f564e610
BLAKE2b-256 7a985339ae93efeb9d36ccf6d2e730248200fa1fa91c477ce6ef34a1c2fefcb7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b13ad842c3df040100e2b7cce0108c430f8447f89e5c455cca79ed6ca790a1b
MD5 32ab46d4031d37b0915aca0dcbc716f0
BLAKE2b-256 1e379f08f97e19acf955f8a2c70ea25e5752775a3e346d1eb5c548352cdb4355

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 660426e0a2bb74afb7a3387b46a6297c1b83d600c11960171fbcfe4f0b31df6d
MD5 805c5d63c6b429fde3a142d04b3109e8
BLAKE2b-256 28e3c77b52a1b52cf3fcec4e4de69bc687e2190e4c6e67a8410f5eae4087081d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aeda5f3866ce2cb7b348c62a1a6ad5cf26dd51cd558cff4343e974ba434638f0
MD5 f940863f9ddfccbc02236eb827d61eed
BLAKE2b-256 c73e606851007bad5eb72c28ea05d4f6e0de9d45045980d8fc0083c927ecee30

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.10.0.9.dev202401011702974667-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e3b1ed4fcd5f3716f6ca7d5917644dea672f9904499cc733b2afa15dc81ff568
MD5 ebe0be65d7129c26b1878f5953ec5fc3
BLAKE2b-256 7b1c25c2b825f4d16661bd60dcbf3a278e3019aadc8df37ad5fe2cecad92b6d4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page