Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.1.9.dev202301011671790031-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.1.9.dev202301011671790031-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.1.9.dev202301011671790031-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301011671790031-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301011671790031-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 758888c78e9d64a30e1f9ee9b0e715f8c8bef4e45e405c2396c216599772fcd9
MD5 814094888d2045aef2d7057ff2555206
BLAKE2b-256 b16c9dbe5e76f71410b4296dc880932eab6bf849823a6b584f2e039e3181991f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301011671790031-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301011671790031-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f1a5419198165b66bbe0e1939536fe2a03d7030face3796cb07bc5e66c320d9
MD5 f32440239427effed244770ff084cdf0
BLAKE2b-256 860ce40c453f25ee41bccd67649dfd277a30a94ade2f53cf7e348c38a99c7a87

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301011671790031-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301011671790031-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ac0b1191ae99a84576c568d8c30fccd446fa182d893173b1ec47a2213383994
MD5 b273c580175e68e5e45ffcc9747fa405
BLAKE2b-256 3543c5761d3ef77fa5b53dcf8156dc590464f98f3cdb1c97aed2c844b5b65797

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301011671790031-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301011671790031-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c4c1bace0f79404378ca29732e0661fe6388fcc403e0c12fbb5de90f1a8479e8
MD5 93be3a9e33f6cd23f3f1392aa0388b09
BLAKE2b-256 0ac038b4989c26f39f016c0fc3df1f08b0b7088a66ed48b4bd8f30fca29d5eee

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301011671790031-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301011671790031-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 716838de41a0e3d845605e6a92d0e9897fc73e4490db863341c5a82ce72db5d1
MD5 c3cd02c8b47e11ee1b66801826839c1d
BLAKE2b-256 4224548676bb8431731a1a64d7aae619c2d200babd25efab9ca425c175249010

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page