Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 281eb2550082ecdae18d50eca2badd71f2b3570c1a0b16f18670f01602c0108b
MD5 3e6411d6331b9cca7588b9304df6b7cc
BLAKE2b-256 3d787580b8b2250ed09f45bbd2a7b9d579b42d747563da91247c047434cba703

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 050102edf2c965fa9f87a908182accb282ffa4ed561c60dface672c25e666a0f
MD5 1a8c2adc62317cf5137497477d843041
BLAKE2b-256 2fd1a0b7d6aaa689be01589ee31732eb9b309ebda5511e01039767347a925b49

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8aad96935791e4bd09c915ef1bfb243e7643e614cd0c00f8eab2d2a58e2d3191
MD5 9839965d0e4843c7d164c02d41db3a09
BLAKE2b-256 e6a3b107fdaa58423f3ce5cd55e9def52a26bdc91f8509edac798671178d89ac

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ff9519c7a42de4114cb108bbd6b6c2ebb219aa5c6ada16159d180bc524b2a966
MD5 cb7d4862febda66e495b39f4144026bd
BLAKE2b-256 e75bf2d0d6563874eb2a8270273cdf9a408485363634e493d633c64256375184

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 92379095994bfb666681fd2b11d5ea575e136205c63efb28fd1fbc84f241f625
MD5 bc12d77cc9e5fe66adf3b7e85ae8e320
BLAKE2b-256 99a5abe8fc7f3bb4e89b9b49378c5086f7963f5941d7303e01d6b8ce0ff838ca

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 16cd5aefec6b12310476907d596069a361d3db87199a4e5b961d8920fe924221
MD5 1df71fd98f54ce3a79ca1038e587c8e4
BLAKE2b-256 e2d94dd3fa41a6b533d924b52895155ad9391180f3b3743ccd93d2113c6fa887

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d78c075c3573b4e506ef0291d4d2c2fce4e8e474347b98a3ab702bfdd88e346
MD5 fa9a338de5ed268a11efaddead492372
BLAKE2b-256 71ecbb6fb641c3d533c8171698d24798b9ee0f5fd441fc7c461bcdc51756c0c3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 74682bde9899fc4bcb6d35673aae5d33f1d97d74e57910e4b8c469b788ce3066
MD5 2604c21c235eb6e293062d9be03f9650
BLAKE2b-256 2b3ab59231ce8c0cd06a25b2e6c08cd484eb0b103f2329203b0c508aa533941b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1cf1a63960c9137aff0d73b17e5e28fcce0fc5f0586fc778060f4e6df03c0b6f
MD5 fb8b5c2d0006b3c7fa68d4640eca7fa2
BLAKE2b-256 1f3a7711e0974e2a7ad9ac5d89b8cc60adeff2c898b7e0e064437e9bdfccd433

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2149f2ffa77788f6f35ba64e0a58c9eb31a76cb9bc522d13f83efef1dfe3786e
MD5 1da4a602bcfb1c95582e086ed7dee468
BLAKE2b-256 5a7e7f747a6fe8e46294a54a2dad9ec24ccd30a456c250a516f913420749f3ed

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7fc4589e29f108ce7eb5dc59fd3e3bec98eab4c1d04896842bcd2baf3dfd4684
MD5 94cf5e9df661a5e1277c59f8c2209a92
BLAKE2b-256 96b489db9c891195db5d68ba6fba5e9911676e5d131e865db82b8c80dc1b9012

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b4e3d28141fc9f3fc15c654925c0dd7f8dc1a513c3d06c355d17e8609ae53356
MD5 60f5f27d9ae35f3e78abd956f4085b9a
BLAKE2b-256 c423ca7305da63cf087097c375635c1b89f8dd09d146193a54f4dfe4cad68ccb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 34e4bf736a9751cc0858d4769b1b67c318ae82abb48efe3df5099b3ff8494069
MD5 92a7797ec4b02f6fefa248e170257561
BLAKE2b-256 f6466f47ae806f272da215bba2c9dac9d98484dd7f2e18547efbbd72f31acb3a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7725ffae80891a5ab827c0fcaac0f880270dad56a82071d4bbd77bf051b1daf6
MD5 a0874beec9c06ea8bcbc8aa7525c2079
BLAKE2b-256 6ec4e5a7141b5ef0cf8974c906feddb6d7fefdc58cefb7f8ac1ea08336833ca8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc8dde74b9c81fd8c226965522c62282d6a46f7fd20256892f24818e033db933
MD5 de46d39ec67ff4a4e41b0521f35721ee
BLAKE2b-256 6457faa4edb07dd0392bef511cf2c06472b72a875664010c0879a9e795bfe21b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7324f838bf629e6c7a0633f7a654eb1e870d9cee6cd19a3813a0900a001f7237
MD5 f4e5d6c82beafe0434bd3857404bccc4
BLAKE2b-256 fef0727c41c8d4f01cea40b60fb10edf043f589debd9048de586f80771bc1eb3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 003c663ab0d5e2c9962b748a9953c9a00fd35d96d57bfee5aba67b6905904cf7
MD5 42d5950f3d40aaba411cd2794cb7b801
BLAKE2b-256 000b177c83131c699364ea0420181dc9fd5a47437b69d204f2d9eb2cbc34b3f5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 81600b98ad8cfacaeb128adba8b89bf711ab756f7b469c08077b0ef619ffdc1a
MD5 830f4fa68ab102b3c9b1fe665aed7987
BLAKE2b-256 ca996b014a33cf3f2aa72da3722d3ab1c25fc2356cdb062872694a0169c80c3a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8a21327d414ffdd1a8087c3376ee3bf15b3ae929bd34957b62191e130d282115
MD5 3c371463df39a53ce0257235538f5630
BLAKE2b-256 91d614b1f51126fc906dd19f56db2a55907f29f7bee167385b4d043900f26404

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301051672736230-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6781ef2da7303e452db947253e659cef42530f4bb3c82354b629613d39a2cbb3
MD5 19c0aaaf9688071ad60bfff2f6aa6ceb
BLAKE2b-256 6c6adc2ea44b7d58811b0e369a966c641ccc7663f0150b796fee0bdba67da284

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page