Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1fcacfd16000744db18a8e36e20cd523b7d32fccc049a3d8014fe721a244ce4a
MD5 ecb48a96e4c84379601300dfb3898da0
BLAKE2b-256 b2f607c98147326dc72fc80ca63b92ecf740af8579641ee18fe339313917496e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b51c37823023d63ba36e1a1c98e02e489584fa4975c3f6305205dc5f95c562a
MD5 b32f854e28e99c2e1bb02bec9f7d58fc
BLAKE2b-256 8e8d282babc089c0514e850ef01a004277e27f13c5930f6debcfc548d9775bc0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b12ab5eda96635ac61bad7fb5b2ca68198205a798b5711cbd2158c459f5dcffa
MD5 a163b283bee3a2377decc7d688664571
BLAKE2b-256 59754e68e252c47a9f4da37c696f3d43517f7eb8edd96791f6d2e2f147cb5d77

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 98f2ae4983d0d1f6bd24b36d0468ba8a1e0c7d05b95b7b7a775106ed1b261097
MD5 6e2497a02715c1e033e128ad50454b76
BLAKE2b-256 684bef2d0aa59b410cc11d4ad7ceb6f12c411b9a6d663857168374c141e1f7f3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2af7038108b3b3307fa4715bc1245a3226940e6aecc02cddaa7b89736dc31a84
MD5 b2b56ce1817caeca82ac6ba9c2d28969
BLAKE2b-256 012d983bb5ef1865a7453b83575ea4d0eecd817d9cc9c1540d93a849dbfbd119

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6f098ea533bfa399cefacb4c0542eb1ed77c8d6fa71010a0c9104ac9339faaf7
MD5 8213300fda23700153175c129c61ab13
BLAKE2b-256 ff199843f9673bf1d88c048d380ccd26bd26cf2ebd2bf0cfcafe2dc4f374a6de

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f4a0b5ca49ca7c3360bc9ba57b2adacff5deddb8fb7180566a1ab6cd84d3599
MD5 1519ef0aa9fd4de7df9563f42fc1aa0f
BLAKE2b-256 a9d8bf5bf15a556a2240bed10944bd21765d00b291a1d765e8fe8ad232891050

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc9b24fadc439e60c9e7dba0de0ba8e53c7a380025819efce9ed3b0e61d410b7
MD5 65ca03a442c674ab9d85ae267f3b4b8c
BLAKE2b-256 7da957ff31d38737dfb8c51236daab32b11f7aa3b268a4602d5143278cb0ddc3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 754c1289afd19f8a3ab779f76b2950155e569fbf8ad65ff86e95dfabf3a491e3
MD5 2012d171888b3b2be798927b3d2708ee
BLAKE2b-256 ac47ab7654f5ad12b178dc79bcfed7e4299ee10e636cf17d95bcdee4b3572e57

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d2061fe37f0b478ece8bc5aeb5df6ef0911b0b83930f71703e6581c1f9a6b37
MD5 f430c3f80142413dd0cd577bb0e1c593
BLAKE2b-256 645ca9f32c8c63c8a222be195572678447f235f7810d07a1ce2dc267abb8497a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 169b2d174b7c771b612d5d52eee2d6eb4aae375b509d7b6d3c6c81c4f0142e78
MD5 5827bc1c03537095a15023d64e3e9964
BLAKE2b-256 1c487c900f49f096a5a28d6606ffc8f1ed0339550f2b6d560d8baa26047ca6fc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c833d2e818bfffbf124d2a9d81cfb40aac4fc55a38df2d020a454f6dc2800ca9
MD5 a0e9248db6a8d648cc7a908bc23786a5
BLAKE2b-256 08fa39613d9154d41c2344a579c38b999b42b7d8cdf5988f558de30a9f335cfa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e78a56666896fa7b640fd8c83df79a0ec7ff0861904bd25de8d4c67a2ab4d391
MD5 63d08f8fafae9401d8bb3172e82b96c9
BLAKE2b-256 4ba6a55b9f0f9bce0596915c09789f27934bf39dd1f79837545e0b317cec08b2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 490b64d725d16e2ba7827e1e1b74323cec31fe7d7c3a89889925c5447b4fcc64
MD5 b830ad8594e3bc135d18dbb3b76ba43e
BLAKE2b-256 aaf88a98778a1b714eb380aa32a27c64d0bc3b96146279247f8762da1e1890e3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 86c7ef0c20c2c3f8bc3632d0828a567cffb7d1cd807b04cbd4dda4dbf865e548
MD5 c67ebfffa965cc55b3ea996e506b62c1
BLAKE2b-256 d2778ffbd375828314190f1645a24a25b76454ab7c455dde7632925ea8fe24ea

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ab058ed407226d988891f2f1ec3372201e4557d9ec5c1b5ee9d51562edffd22e
MD5 3f99552168f38ac623ac244d903fd715
BLAKE2b-256 02dfa5091770b4a7d04ab8b069ccbde80552f0fd80345015395c5eb8d0858c74

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a37e83450cf84a271e7a4b6f1958ba1f6772b78b04d0ccf8f8a15e1129b26c63
MD5 75fe38e6b4b61e694e4d247624aa3be4
BLAKE2b-256 ecc649e92b65a5d714af9a80e19c58c4aa6f54b0574f17fb90df0e1852a69d7c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b34a4bc53bb63e585f65e7cbf12d3cab39ebbd0561f6aa3342b30704e77b655d
MD5 6cac1c6c60842279d21e478087462450
BLAKE2b-256 001bbec70d4c6d84771526073e5dc53dcc802726c0b91753e41f808db2809fcb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2df3af400ebce174036dfdbf4a7d05345a402a325057c5de4fad0dbb1c21774f
MD5 cc18a4e1fefdf2630d4bf3a2d6632baa
BLAKE2b-256 b967815804b8d3ceda7cb0653430c3ec5b398eaaa00d228d6f8f7203593224e6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.1.9.dev202301061672736230-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 39dc060a4ba080132529a981236e6cb1b385b4e5bad29c1907a677793d5a8d54
MD5 9b7ce2bef9ca18b3d06b823b10a84fbe
BLAKE2b-256 a8fd88ddcfb58eb1fba79fa41d4dafcef984d3662692dd9d2094f6cf9fd38b28

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page