Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1c7bdca0cadd3da17a870f151decc8ab338f41bb608d0febf8a2c1469270ea11
MD5 e31b1f6cafb7f99c02aa828d2f41f6c8
BLAKE2b-256 8c2d35b086f9cbbb42fc35c34f36f64b338fc244c0821c2230b84cf5a3b29940

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4dbf7ab0aaba1d145904af95e5edf8b9ec41c60933b9a930de5fba83c5e5570b
MD5 3ba609c123a2c5fc5ca54de0923b341e
BLAKE2b-256 d83adf8c70002547f6074cad4cadecbe492df555ff123c3fe4e29789ee6297aa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 434bb06277beecd83708169438b70a26d63f29057798bd1bdc59fcb53ce61506
MD5 d096ec0ae3fb6f95d12a8711bdda1e4e
BLAKE2b-256 55e97368542a61e932459de3b523f568e496129d68d0852969d0250af5fbf325

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8f573bbaaf91b46d1ae5a3c35c64ec725fbced521ebb6bb7b2a1292627787cc1
MD5 1aaad25df4052e128476e8947e7022b2
BLAKE2b-256 dbb28a603a558946500ace8e73c0f7e6b81c82514497b932387704b56bd0a1d1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2dacd2ea25e79df7e22f9d307831afcdc9b835505bb30e9b34d004dbc1d59228
MD5 6faab27aa79f95b418d95cc501997a6d
BLAKE2b-256 a31656f9b69b1341c82d605bb30ac9a6bafa78e02be7e75469077ed365a0fb17

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 74bcec47963dcd35e96fb8eb7d63695bd69351fdbb476e128f931dd81a2eb18b
MD5 67e0f4e263512aa8e0c8bb98dbe492fa
BLAKE2b-256 b6e41894ccab860d99f0c7a25b357cab09ff47b4a8186963f56749679a0c8375

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f8a34f064f3a05255d0f504a531a9e4312973a26efa6381258d72b1a07a7a8a
MD5 3a98b55ab2769970e8495e90664c439c
BLAKE2b-256 bff29c6d01c378e220ece255cba4199054690935a99c4f71f2ae3eb9eae024ad

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 94f2a3c1c6d9d5c87a699a945828ff7037bae2b1795024b22de5bc65b6c70ad1
MD5 162b6bbae5d144b360e5a755f9fb632b
BLAKE2b-256 f10785e8748b05f0d8a912e7a91fb5c224dfde3c32604aa32e28fe87e69f0640

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d1b126f19ce9addf4f206315ac88977e804009d30bcea4f0cffd3789d633764a
MD5 1f690326623514e67a027626681fad43
BLAKE2b-256 bfe28effeea3e94aff82460cdb01e20162d1da91c27b698461876cb6c1a0c8e1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 80a75e719992cf95ade8ec05b7a22c5fc1a50d7b2aad302c34f1ef875af2697e
MD5 f237f88648642b6b4db6f8b5a5e13ce5
BLAKE2b-256 a9def594db0c834b8ba505250293b031f094b14e2465c6fb1ce800c21abbe47d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 00b76a008731a91daebafbf5e886b97abf5f083841342f9e68a17c10c17eb2b9
MD5 72efd9db3de708610613704182e58655
BLAKE2b-256 6263e7e0cc1cbe19fe989ab15e848d852d881e931e0556609fa4773cc4ad637a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc7402678a0d52c01cbcb0320cfc99d7dc02090b6a8a7512639f2a7c29a54992
MD5 f542a12882f82e5b7bcf392ad3b7c183
BLAKE2b-256 21a94749e9c411b034d9b1e4f791328ffd866acf702d9601890a2425c6d98c38

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7da42dc556bd7dce849bc57cedca4a7c132a3c4714bd80e94e4c162e5268f996
MD5 921ac37c4b8c95467eb86aa867699474
BLAKE2b-256 603b0585fd3e3cc7647967ab7a4e55755c5301c5ff3242e04659b0e28fa3fde4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 84101b2f71f0c3c03091dd1f72d4987315eb1fe20bb860541b8968d39250974b
MD5 3a664be35a3211a3c98f94346d86e93c
BLAKE2b-256 8aaaa0ab5ff91a110b0eba33167e93444904f963bb093950bce8503878e0f86e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce4afea2be661eedabb0187db8f5d3219fd131dca540cbf02d259fce72a3b1d1
MD5 b8d747555fa5a6292f0eb1025506944b
BLAKE2b-256 4e368571946865452bc146001d2c6af30596974e0c816b703e0af2f418e2edf7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e4bb3aa48e9cc55b070e188f36087cef74c524a4969ab5627ba032d0fff936a1
MD5 0f1ce2d962369e1fc71ee9895c2c5fd1
BLAKE2b-256 2c2af32bb24b15583e496fef703b5cea88aed88cacd8e474d671e107153ff44f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8202cc6d939bfb04514445888eebab6fa4d626679fbf33cd520e6f3f5a7c68ee
MD5 e2982d437344925fb0c2bfee550304d1
BLAKE2b-256 93f89390a6be0c2aed56cf7fdac579801a45960753e39daf5aa26ddc57496d4f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 33391f65695a3b9e6bc165067a1a4ecf114e85d896dd2d91aaf6f0f9c1e6ef33
MD5 17eec4bb3f807470f90b507568022e6e
BLAKE2b-256 9a607bb528343e1ff4a3c12f4f34a81039de4f152af27bc60d22639d395d4ea7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3036dfa5079d8655b3eb544dee06da496a660addca6dba6891e570ee9ad3907c
MD5 0f2b6ef86379d7ac7b2d4ace95efdef4
BLAKE2b-256 5579400fce10bd2b1efb0ddaa3df2001c9e5875f0dd5e8e5fb70719436a6f208

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301111673303421-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 48b470496085d2953ae595fd33de27350d5def4429031813cbc98db14af8c6f2
MD5 356dc82e371131f6e1a9a849a1dfd3aa
BLAKE2b-256 f78396836de53d4a57e2c49027233d54f6366917b1840ec5a9242e804d90a8f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page