Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 50df180366c9c15f3d6cf2144b3e79f4ae4e01c13af66554cb3a8b7d340ba11f
MD5 443633dddaced05d9562f8117e5fd9f5
BLAKE2b-256 5bbc93ad6d3f7030d41e9e3b0988e5cb33898f58c356f9ece447ea8f02d8c9df

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 61948dd2dbedd11e5c1beaa4a82fc7eebca948247bae580ae710f8118935c397
MD5 358ea7d96b2a7b535f885bf897a21670
BLAKE2b-256 95dbe4e55ad0a1575d41c0ff478bec002de87a434344471b4a2abfc0f9970c8d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 babadeee01bc5bfc5fb1cfd38674b85c0293a2a961fb50e9aa7ce7d4c3dae263
MD5 a947488205feb30fe8c838c9c09201d3
BLAKE2b-256 0ee61eb19499005a45ff61dcf82aa57869277903a8ba25f635d375a2e5557cb1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4c553c17143d07ea1c7f4ec6683b0e19e6aebf8a3729b0040a7b9afc47c2c448
MD5 b9e27022f4217b667f8b222c594af8c2
BLAKE2b-256 47368de81f4ab957fd40b5cf46e1c4c55e5d4fd81d8170178abacaa84bc78cdd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf5805401251ca387ae63c250836bd7cb3418a4740e2cd8bbe58e5a617462d9f
MD5 f1ab308eef3a0fd9e63464f9b459a811
BLAKE2b-256 8a31d4bd70fbce22e394a7f3153b8dd896cd0ae74e25d756058184e420040a3c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fe0f052faf7a7861bf48e59109396351d1512ca169855acfa3fdc85fa72cbd7d
MD5 0908993a2301fa8fa2dfaf4f38039140
BLAKE2b-256 320e81851c3e0499874a0633b79e38cb4bbfb094aa8eece238bafb350fbdb828

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02aa872e2c2ed132c76b12daea9842ac56b3e5b52778fdc064c1ee7d5f1fb295
MD5 5a39b0abc66400aa54d3fd00833fe2d7
BLAKE2b-256 f8a9779e184eb1ee83dd5c0f51f1034c5d8ca225cda2e95a9870e75675908b8c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ebf8a4500742009d956e9f1d4df3a8dc0fcdc6c2795ae7c897b32a4f195b3a91
MD5 af971bbe336dbab7f3ed0f4dcb419ab8
BLAKE2b-256 3f6239dd024405f691dc68c8e4c54a6d131cdb064743da64291d850fb764757a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d35492185bc5c735bf6f43b25947fd24a4266a7f327552afb1696e27bcdfb73e
MD5 7875ce0faebff85199dd72598629bf8e
BLAKE2b-256 b8f6604797851860812f3a5999630584a50aae29524adb63c5ff0a4fefd8ee90

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4be70bb05305bf518d7ea4288b886d0902238d41b4d09de62201e2c5fe94986e
MD5 e6eb7aa8daecd713b897366da0da091d
BLAKE2b-256 5bfa18f6e5d4be8d701c38b3c7bc3bd61cecec04cd70df6fe1992eb1139c1bbd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a71ea16fa5a895a215f948e67590e663e817c82487a5ed12324eea0b6e322d80
MD5 986802ae435c74cebb47f0b9f3e75760
BLAKE2b-256 b218b4f8881459fe9bd08f8410570267da31c20e61fb38cb2c97e8e02f76a311

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de9031956b627dac14d1e4dda9fc92909c4739bc20f15f7ca8ba0f3325a3bbb4
MD5 32f612dac3ad0695944ab5b0a6405e00
BLAKE2b-256 7516408d26dcd8a34fb6478da7462d6f6bc16b7466b9eb51ae3dbe795840eb22

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 331d46b954473bb19275d46707453dc8c00cd1a524b3e5f6b5ffe4795c5247c8
MD5 d7e49628013520c849af77205a932daf
BLAKE2b-256 1dd1554353f25e948fc3cec3572fe3c66727bef8bb7a03c1f76b39988d61c3c7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 01a3b857892e07399f9204ba29e26422601e8cb832171b3f39e23786bab2a558
MD5 ee92493bfc0a8b7335f2e8ad84d38289
BLAKE2b-256 f95577943caf1381be0e6b84645a7f80bb695f740442a37553ca29ce371de06f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b01efaaf6dacdd0dd36d21633b9867fb6c4c4a97a9fc77ce4cc9c3437b59b4dd
MD5 e43c88306ec0383eac021ce7c415d911
BLAKE2b-256 616f0e2c94e7872f54bf0aa3aa0df4294aca85f357930a469f9c51bdcd6c8b2e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9dbb95ec480e4927b7b8f45b294468732a1d7a73ac77e14ad800f13b21c9f935
MD5 03e3e8ffc1e6d9d4cb43dcb910741deb
BLAKE2b-256 edc4493a7b5a027e73b93f734366a89ae8dce46a5f661497460413342683fab7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7878e16b60302b3af12c3409a6f625a3b63ce1896335946b751d90e13ec3dbf0
MD5 c575acaaa0ad192c621f5f049a8c0f81
BLAKE2b-256 5c3bf88c7b57b75175dce3ebe30373eea2dd1d34885e40edafa2056b8d4ce459

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2a1f62a4f05df146bbe244143d10ef012fcb6fee3210acaf62fe39c8feb87abc
MD5 45901632f02d9fc3914dc154beeae6a3
BLAKE2b-256 f76ff4656f20a3314bd4f635349d26910a80dac9e5ea02b23b7c0173e432a13b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 62ff8d1dfb5bf5c19f222cbb1ffc1f68748d6f59be644a50f2e4d74df2593c51
MD5 111797a4a5e5352e1394610fad8671fa
BLAKE2b-256 21d50366a430a1058ae189a83737bf6b156af69458bd92c8dfeb09194ae38213

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301131673303421-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 18764e4dfe8f2e1bf21f3890585c4b2391ba1680bf377dec3ee2df185e6cdfd8
MD5 b6e2ab917e086ec70a46194766a602eb
BLAKE2b-256 fbd5a61faed031e8e0d9da5a66df878e25861dd2a884ff8205406eba22295071

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page