Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 33199414040b982938ed5f196b28a2471d22a1c5dec949135ca83708e4db28e5
MD5 6f65121ab9565c143b884821835f7e5a
BLAKE2b-256 75beb2e6f06a5d3deac0d2800b4e970c6996303c3f1e52cc1879328ba054e8d3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8123ca030cdd1e6657dda405dc1fe2f96f3e199f18dd9a6585e9cc8fe67833b8
MD5 c5c5a2b56bc0cb467f2aba3bc9d6b737
BLAKE2b-256 9714118bcba3617932cc97943f0581a108999c48c22fd5d3d90d48715f8ad153

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d452f8ec24efdace906f7320dd568e1a115cfbf1fecee9fa073846d3b4b099a7
MD5 6ccf14177f80ecc1f13decf675470c59
BLAKE2b-256 cb19a6fd2c5aad46ca496310a937e7b92db7e9b2af33217c30af56c8f505cd9b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 025e4517dc7850e78821739c75a3f5c30f96a57dab18eae3fc2d26dc6fa8b2ee
MD5 a2b5f1855742bf86a34b2cef034bcafa
BLAKE2b-256 639ba309b092f5e6c52ecb4a3e23282abc0e584833538cf00ad5257100693260

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3725a1eb5b2d026ce67d093aa7a7ae948b8c92b34ef3f7f32d5c4163037f207d
MD5 34e1dd0f4d6199c379bac716d01a478f
BLAKE2b-256 d83316b44e8ceafe4ed43225c589a7efa0c38eda24b920872ac17e38321114b2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 20684617c9a7f2ef7ac6eec1dbb2b811f91913e805a9414d188163dfd887da5e
MD5 7776cab70878c415f3b3806f71e2d52b
BLAKE2b-256 3cb2b07bdaa8259ec552cbe8c8859a0d7ac225b2cf9579b7b6322786e3607bcb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76ba4493fd1bb73877870a4c0b266ea56af0b95d360048634129ac23ad82d47c
MD5 1ab3c7840d072e862f91d60d029461f6
BLAKE2b-256 0e689f13e377e2ee62f6b90c3ace4559de76cd7f99572e94e1b503ed8c36d387

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d19e7de6099d196b8d30fa78e3b7effb7973209886635823f7193eb726b2f24
MD5 7fde5d00ff454d696c499d0da0082d0c
BLAKE2b-256 0a5d6e9731df3b44e835a2f572af4098184021abdbcedccc55764a9077c7a09f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fbf414a18ed6beb8b9ecb238cd35a28da74eecc7ad99327ae4989985c27d00f3
MD5 db585ae9799b74f60a81bfb11fdc3076
BLAKE2b-256 bed66a38a503ec866c6752bfe300188b4bba30162c198435a011231ad23fcf8b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fd3757dec01e98073edcdac9db481d214504503dd9e8d968b76a8ab8df4ef472
MD5 99a13081494d6eec3ef694acaf8284f6
BLAKE2b-256 f6fb544cf3bf7e67df8ab179d9ecdc5c74557e5b3190cbfa35b70f649faaef8a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6f397a5e72d4efad43689ce9cc974b7e04f6605894a3ad51937fc801d43da320
MD5 5a7b16906933a990a70c94c1124b23c1
BLAKE2b-256 717d551b9d6c099782fabd3b225e0413cce3bd61827fcd7db7972c90b48387fd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b518e1fac26da30be0812761b4fd8ba126cc88f49503ad06cd9f45eba42e5db
MD5 8ca7c714805f65cbf76f24fc18b049a7
BLAKE2b-256 e92426482a14699719d49c44ed1934fe8b7cc000a129dc32143a349350a92bb8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ac906578ea96bc73c7cf49ac6e02df80023f0fc3d3a9bafffc63ab0af2a8806b
MD5 0270acb10762906101d9aac4beef141d
BLAKE2b-256 1289669d58d0dc55f5f4412a3c42b120307796141eefbbf843c06f7f534f8a10

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d7934af0013e500a68ffdd901ffedd5b1b2a3bb83623e224bd141098e5b9eef
MD5 6a13af8a951f29939e09905afd1170c5
BLAKE2b-256 23c7517a4170e5af7255866366d21326b5d8a85dc377aabbcc9882e37bfab2db

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d81ad767041e5981a21998f613df7b289b62ac063ba046c672e2edd62e4b22d3
MD5 aae31fb595e0d71e7dd1f462514953f4
BLAKE2b-256 6e70cdb20c8e03e0523171e3a0879405b42243f867077ef4eda243651a897b56

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bac2aeb4097169f7690128ffe8004815e8220479012b186d4d4cab8bbfc67724
MD5 9016f453e1dd5ea062b8e29035e825ec
BLAKE2b-256 cb74e58d3e4961d06543b14799524f66d81ad6a5f2915ade1a7bf53e6a28d949

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0656f947b5b3b13ade105623f6f8b06baf75ee959321d6d1d6835665ae67e03e
MD5 55f43e06b6eb2ff5047d37a921d5afc0
BLAKE2b-256 d938dcdec7a26ba25f47eb420606062b2a1ec76d43e3f12028bdda0438a765ad

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 94658dcfc1e816c738a33c2db5db7a72b7a632e339a59c953019f6cad2b50975
MD5 34e4afd25d122eef967a2b0de51d5e81
BLAKE2b-256 6d609b2f3f3b8a1f529ba2b924a143451cb794632023789ff636bd881e0bc014

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 684d49ad1540d873db31276b90bd092a917d8ca28912f8c4b20886b5d2c822db
MD5 6f69617f0bf328f7386e4fbf3b72c0bb
BLAKE2b-256 5c65aee1c5e0a4acf9bf247b859c131676d7ceca27051769de5c44632b175fd5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301191673875036-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 60c8296d379fa380b5827b42ed74a36a354215c630540573ffd2d3d91b01279d
MD5 4e1d20a835564024516f6e263b6b0439
BLAKE2b-256 2be871e9c026b4212f7f99c04879bd9af5c4b9c628768468f427889d6cc8abaa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page