Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 363496c26d5ae6b07fce85ed1fbffd3acd3c4765b401870fec15e0f7662aacf8
MD5 b1ce28bce8c78fd90e327e5a3595cf75
BLAKE2b-256 23a9d4d5cbe78696fb9b7b47bf3c61b36aac471edb6026e99c3a5c3294f0307e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 687449a626e85d9daabc0e9b4cc66563b983903155e76e93353b9fed3dbb126d
MD5 aae785ee0784a6c7b4ab436e9a02c015
BLAKE2b-256 824303cb4f12629ba36c00fd3930c39cc93d3a780ce5abddabd0e3740669cbbe

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f53a546cbb353227d9b77ee1266752d9c47e2db7cf80d675ecd93160a455cd06
MD5 acc5a3021a8f6a55715a2809c20ae684
BLAKE2b-256 f656c1cfbb9ccad188b860e584bf85584bbea99a3df2311036571a8dcb5d5be0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ee69d39a9ddb4bece1966d1a64f9c7a0bfe1574000daff8c0010cb7ed1e28cc
MD5 b72eb226f314360b738d15252b3cc7b8
BLAKE2b-256 b2e9a53d8f988951a1979296d53380d3870f3b1fc3c471e2052748b0b4b08445

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 81978079fcee403cee3b72d43d258144de751d4cd7736789e8911a330f0e474c
MD5 09ff346cc6228c5a821fbddff1bf0641
BLAKE2b-256 b0902219c4502ef8bbeb3f662343fa90ba430a13198e1e9d8023a91d18b102b0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 635bfd280192536c2bff0387e61491c27e7377cefab8b225179510eef34c0419
MD5 ef1ce9d1ec32103809f3df732b8590a3
BLAKE2b-256 225159fb0549008666c81aaf177109db3d97cc8dadc384cc6954a599a554572e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 039d31d7292c22a0a0a400b4b7a46b8ae04f35bbb92e33a79a79659e0a22d515
MD5 bc14fd4df67b8fc2c3260da332e0a769
BLAKE2b-256 dd4ba9f62fec478eb1d2e52b0e803133e5f7a6b22d65938aa369c17aa24da49d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5d08fb80e1220011eb745164bb8a09044d855c28f06fe8a3466a70812260b587
MD5 5582333f8c14c29ca6c0ddfe031e0ecd
BLAKE2b-256 b5af13e10c751602574e276348326abd5e9a4960754aa717225a40182c0ddf49

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6b56b915d659ca33fd2a9a2b835a6700efde68f4343747e0292343d2c0282fb8
MD5 12c67bba4c881ba89a9236e9ab0bcd18
BLAKE2b-256 9337d3031b66f33277a02b16da5b60d3cfa33340d0c5d1376cf97975060c9f71

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 479a6e30d41835f9c305dd989c878f21dea0ef61c0b4a3a8a66fb324109a2b7f
MD5 bf7313b952d1da606b4fdeadcf8d8a84
BLAKE2b-256 98f03585b47f14e9566e8c8ebfc9763ff9e7bebda3da3a974a699a485b491b7f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ba4e3ea6381d43a25f34926347531c90835b9252ca0623bbc6c8e2fde6b5ea69
MD5 45bb979c75442450302402f9aec037d3
BLAKE2b-256 894eb1b9300d578f69c082fb67a40413286cc147443db0bb750d7aa13ad8cc4e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26f49d0a4e66f93977c7e634ea729cb727ba3d63019c175d7d4f5e6feecd21ef
MD5 604fc186c5f32b36bab62fb0c6c1c140
BLAKE2b-256 c98c49d21c59b0b63f2c1c499608c8aab51f8ac27a25ea48e9dc11a517c97744

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3f61038d0d8ea21f126e5c62ee680d0b52183948295b9a3e697c36280221a9f0
MD5 cd9825b820b9e4182604771ebcaf8328
BLAKE2b-256 f7420a48ffafbd32bf37cfbae229bfa56edff0ca54d23d2c60ffb5776fc3cf25

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fb2451d86374be7a4d6b169e4df3aeba80da68683d2df2e66be8d3dcb3010319
MD5 21dd7ab1ebfa40a7ecea284daef9edee
BLAKE2b-256 d86e548cde9608b44f2f6ad1210e45b26112faf10fe76c2739df1180cdc11ac4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40be9797a87d0acd0154d1664a4b9b5efc942c54843089c13e878a5da77a2576
MD5 6838c56a6e38f609f1d3e41b0f9f6271
BLAKE2b-256 af28aa1edd1669f39f6d24b2d24062484c6e25ef8cb0a4aa33ad07fb8e7599e0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 86845d02bbc04a2b83ce190b0222642c6c0ce36220e12864f2eb02635b907d68
MD5 f962ca6979264ec21687812c4f234efa
BLAKE2b-256 42943f14d471787b9a5addfa0117e0144dbb23ad9f1d9e7d4d7162dd2e7d71d1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee64eda34bc4dff8787471409808aadce72c111d12dd52ede41d4db873d5f86d
MD5 ff15a25167e3c5fb2d85e9f91d947ffb
BLAKE2b-256 6099a8ef10c0be31d1353fcf63f6eca2cc0a0b8ac7fb1f9390edf679c2e8cad7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f843d5dfffaa59c9ae2f094c715627e6b2e17275ab2dcb8c2fe5b5738d0f17c9
MD5 55dc715494703f051caf501e00ebfddb
BLAKE2b-256 ac822717fd952f8d848b07727b4f343364039e4a02c4a48a6c7e05ca78dafad8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d844fbb81826d911559cb69860214aa3c65799cf16da2ab164c065b273c7774
MD5 9580a8e6d10a561abfa2aa6a7bd836a5
BLAKE2b-256 7bc60b2af79a8a20f286965ca5c54917ac81551c0984bb7d48cdbb02b40f281f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301251674421262-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 88c0ebface4ac7cfeed054503c6d7e2723a03eceeedf225e591e056603cdd820
MD5 5143278f8071b835a9b8595af7b939c1
BLAKE2b-256 e8711016c1a48626896f713935ee09d24050bc53ffe81a10106f685ddb23f438

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page