Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fd65bea4e74237a6185dbf8b1e3227d0b4526bb9b9af341ed20af44092c98491
MD5 bf0628edc3004b0265f62e0a885b1fc6
BLAKE2b-256 da55ee96f4d1f81542a5faf18cdde60d8cce4027e74cde34c9ef2b21e1045fa4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b268d12989f9ec074b7113f24fef899a0cd68e94c1c8d5f82b92d4b8529b607d
MD5 580dd73d57940eff69dc38e46b90cee5
BLAKE2b-256 94ab1502359a77c7e0d9f2bca5dedad8e4ecbaa9edfea0e70e533d1eb54e2d42

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d946dfb2599452b87350e7f1eb8ee0cc2886c6177124e91b1dd6a8cca86e2fdb
MD5 ad1a66038e9d09a96781075bb2658272
BLAKE2b-256 7bbf78444a21e7bf5908c892f5b2a1405c0e6de9faa1d4b3e4d4dddd920e6667

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 842eca37a39375b4b798857fa0aac8a26b95af007a85fe587ecaf559441e720f
MD5 bf8f2054676876bbfad6399a7e30e729
BLAKE2b-256 d4b94788b12c740a36ad8ea8c4438c79d3f2b794e2055f94ab4c4a22ec62f28f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 086ff1dd6cc62f81bd432f46ee249ee5de7509fb081a1cf2d9fd41139f7235f0
MD5 281a4c70d4f815744a7d371fd123b593
BLAKE2b-256 cb9b68128defb174cc394e5cbfbb910a1006b8e3d012d300709ec79f0bf438a3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8b92c629bd7af32b3b8c28fcb146afd77cea54b4346db5781effd16fd36c4a2a
MD5 191a486551693557394df1459b820403
BLAKE2b-256 a0ef8afb0f0377a769cf6119455f175a0672e8c0c121a20aebac54b6d2c8364e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a4fd9e4dc99a469b16f8f6b27361c899ad437f2df901edd7acb721832e90b9b
MD5 72f8d1d442d13d3e37a1944f3df3d4ca
BLAKE2b-256 e8c5c8e175c8c262e04473b6196d3510f4a22f43942c995b7b6c169602a79db4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d867f2d5139daf6ae18297ca70d2d9dd2a40080da879e26022dccfcaeb262f9c
MD5 3ba516b0ebb4fb350c9f077b6b61db20
BLAKE2b-256 aadbc93e3c6ae992c0a3da1befd333a2953ef332959757897e029981fa186c16

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2c0d07a14101d0ab20fc8bf59f82c7d05b657697e6b6107e7f561dabf6932d45
MD5 ce4ab48e7101741beebd8ee78028fe01
BLAKE2b-256 c5278402ebffcb56a9dc3399e6694f308527f1958fe8f25768f20fb37ab525e5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f1dcd886a784efe25b0d8e0f8d867dbe4654e18ba56d40adf4f13a6e8db7f29e
MD5 323b355b67c4ccd1004f236bd0211aef
BLAKE2b-256 90019f23cc1cb60fe1d7eaf207b6473ae9061fbc07076f8990de8ad370ca0258

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 71a12464c3bcaf6ca3d485959159573db993e61ef47af7ca6ce51891af7c654c
MD5 5a579bea84ab7edc64b5ea6ffcc0b6f2
BLAKE2b-256 4b3a27d8a362e9c57db703eeaa294b9069fcb975326528c97d3437b942228b87

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d30044b184b6787e5c83e85bec7d0b5cf1047d07240ca5f30f0b3a1f31314e2a
MD5 98fcee4804d57e2c0179f3dafcced110
BLAKE2b-256 1899fadf070532db2f372eeb81cbae4e06501fd506f1ac3c8922ba025307c641

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6afd82a076ac2c54b7bdbf84f5812e21cf0244b8cd4dd92888fe62ce18cb0b52
MD5 88ac474209836866218865bc7451d536
BLAKE2b-256 546e870ba3c116c7253a12e96c20ccc280470c5bf3d025711f6a4cacc76d56be

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7a836b0b76c01b9407343e43698719193bb3c4ed71027f96a20ab5f6a7a4eb87
MD5 02c8dd1652313abea2e73036b06e8f5f
BLAKE2b-256 5b880169924e54d678a62420bba8888ced5b9cbbf2e41da696eae46c9be1594f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4a89186e9adca4931f5e3ac2932a0bb0a069290a3c9c4d707946195b6c2e1687
MD5 a942b9eeb1008897d64c76b4961c9912
BLAKE2b-256 dc50ecf8457f2167608e3f24cfd2390ca86176ee046d3045cb799ee29b58a70d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3e1d1873d83d6235ac1145b04964a32b1f0265db3f0f38ff62f16226ea058e2c
MD5 c865c9215b3802de316581d6a45bd663
BLAKE2b-256 dd0639b6ae492066d872b97eb779a391d8f15e900bba9a9a739c3924fdd6d779

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e37deffe0b105bf8587dbfe05f36f9d18d004822532292b7b03cdc01a755797
MD5 a894805f879ee27b9500bf54959dadf8
BLAKE2b-256 a7a1d7d66706a304cb51efc405900b5c580303e786149ab00bfc5114664a88c0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6ad7df2980380ef9a6152886f5c5243d0b851e21141278c4ebae21e1916fce9d
MD5 76c511700ba439b985695c2ae2c049f9
BLAKE2b-256 f6259fca17d1c759a0e6efd5164b4f6c8db4e7b910a51881e82807eb8c510aae

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a6b056b0b6304e0d262f930fb5bb9cc5108704b35987d4e5ca3cddb351bf9787
MD5 df0a7b9f4f06083b1ac179c602d90de1
BLAKE2b-256 f19f94b18ff6df9261fa53f8cb5acc27832ad0137fedee4f9825ce9e81167153

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301261674421262-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 13107b8310653e47d82d716d4a582b2fb333af6faf6c5dea6c8d0ad33f2e836e
MD5 aabbddb75fba41b9c2d9e614dd18a153
BLAKE2b-256 87228d9d0929425056aeb1612ecfc82bd291cd2f5a5d682988902f7e56e62a8b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page