Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1c5206ed9505268098c59e0da68fd47b663246cf37171fce7583b938c649426b
MD5 9eda66ff9ff5a08415b780d81c6195d5
BLAKE2b-256 731e40ee4954a2bfe53cc0216192bf55fe07b3d202c944d774f725eab9bb8d90

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c247ba1655eabcb8a64701d9710d26629fc0112de14ba62288fbf1ea6d6d9d40
MD5 bbd4769782fdedb5a733be69bf8a5804
BLAKE2b-256 dc1a5d2a3743b1c74058ce2e47146a96c997aa2d60ca2caf83c9a377b1130750

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 003ed2e4f4d31b010aba8d7e2c05d4532b26f7b1a4e91100d14146cadb471162
MD5 f0e2d99ab87ef05e54ace6edb71bba44
BLAKE2b-256 07317260945e5ee45a703838c58ca57fcd07ddf5c74e5797f29dc34e17f33748

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8d07d6ba7841b39a217c201683de2a0355973447a1fca2dfff7334f10bcdef6a
MD5 5f98422eb51a4f13264be980d3a4f8dc
BLAKE2b-256 be9566f46618f2ed6ec559d68745abfcabe33142ac8b910451bdf9f9315350d3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c7dfdb8272518ffb38fdc0408f10722fd5296bac603965120a3304f2782d3a28
MD5 df8c4fa7a5f886a2a17d318d098930e7
BLAKE2b-256 c7000ef568d083315ac80e16313e74e27adc4b71d2dfee7072b06a1d5aacd968

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5a652b6a50cb3b5665326df62a803fe2ae8c88cfddc79701892c38c933cfcfe0
MD5 529536266b25170f5cf10cc01c067f03
BLAKE2b-256 b13ee1bc561a639362778e1549e9079f26462e79bef482892b2c55390936ca26

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29050edf71b0103864a22fc980211e8897919ace454748a304156f2efef2bb14
MD5 910e981f2c154262941f60f4a0f4ea5c
BLAKE2b-256 93798a2e0207eb2209b51e261e0b42f0769a37241a53ef6691f4acdbbca62b7f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b584cce3b5a012978dfd6cd7dd58dad4380083567977b65fe75fa7fc9b6e9edf
MD5 f13292ecaf5e6f22c1c4cf5507a21b9b
BLAKE2b-256 d5fa9fefea34165c9b542c804d9cf32ef65a6ca4c3ec23294090687981ba501f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b643cbca5c00b72057b172dc942646c93b0c7b5a9162d36deba45f2e5e702ada
MD5 bc4ca9247138cf1a251e68341f7f6c34
BLAKE2b-256 e03a31ceb6fe93430f3e7e875e3c3055ff1bb936cec16329c1d8327e6d9cbc10

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2f38ce886639c7385dafa06099926cbd8804b00364efddeadd3dc540d731e1fb
MD5 1aa83ef851588b01ae39c24087b0009a
BLAKE2b-256 2b4430f8f744d72b231a9f7b9130984f328569c1b73ae260df0dad8de261c97c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 336e91a3111cd3e7036da7a20a528abe8a12149cdf1cd8c0e31669446782fa7e
MD5 19a9b108a9ffc4e364e2723e52cad7ee
BLAKE2b-256 8a0d4de0db538d4275fc0eb8d0b9db1960e937c67f551e2e73fdd1509e44e931

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26e73718c3cee1eac4891de647703fb2e30f2253dc97db61a302eb579385b610
MD5 af13f903b6d4b6a3a80dc15dba2eb248
BLAKE2b-256 5d012df673289506392c0e18f18c8d7b9e8a5dc41d74164c175d9d4c9132900e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 28eb9326fe922bd6e43923787afb3092648d431a8532891b3b772d2ecfe00dbf
MD5 aa75a7e5dc8cea70ff940dd11e03a338
BLAKE2b-256 49bd4e97a56ed0fdbc51b420bcb218d62a9ab6362ac0854ca125461e0a4e972f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 320b5d7bfe023c38baf8cbac616988560a6b6e6737536c03cbafa583f41d44ea
MD5 5c1fc43b8122b8e3a6a4c6fc048441f8
BLAKE2b-256 3f4d54ae689366e43dae7c83b0b3a427853de3259bdb47ea2fc5d47cbcb0c248

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 496ad277696df5c9009a6148f586281e68f5e2401d4c87ff052768e732e844c8
MD5 7a9fa9f819ccdbd86aff0f1da5e86290
BLAKE2b-256 76f0babc667431c7644fc19fd74288f82915fef21d0ccd41d5a621dfca5cc4e4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4952755af9cdac6584895b76553bde51c88c92587b1035e543fd9420f483d8e6
MD5 ac2bc58a54e513576ef93f9fefba0142
BLAKE2b-256 7fccf36e2d24cfc01d17f19623089e78df551317ddf209503140c01c4b8f2050

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db625236c4365a5718cabad2e34d6c5813ec03de63021eebbef839fa0a4543d7
MD5 e75c86f861ab8c79ba008422eb017ff2
BLAKE2b-256 41ea33bdaebb85be89915ab19d3a121779195aa1c60c80acf31c762bc29b16e7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 11d69494b35d3e74269c0b0946bf1486bdea38f100e07087f35263f32d650dd5
MD5 93af99b5454d2007b31a948a92461c50
BLAKE2b-256 b27f1e71bba677213daf1805fa045a204f518d88d9ff48897396d24ff6f95140

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f4b8f5508881c6f3e725568c35c795575cb86301c290da232daa118d06210cdc
MD5 8580fd12151f4b254de14acbad0a857e
BLAKE2b-256 80e603a45d4a9e8ddd8349186a350ca0f477890dc628ae381fcb4b8890682a87

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202301311674421262-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 41c6cd460cef8fa828133eab05fbdae8076e562a67e789eb9a6ca7b9a3f1dcf5
MD5 ca1540f3c7b84795e5d716166c7262ce
BLAKE2b-256 2c79b7cde4395ca133d515333ab43b037a9f43b4173fa8d892e6fd8422d59be7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page