Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0e9969ebea6bdb4b58137d71f9b374b5bacd1c47cdb60a29f71d462a35c8450d
MD5 1f858d540c74c2190f92a50b2a2599c4
BLAKE2b-256 ded0fd1734dd4dbdbe224cbfbeb9d63373e9a5277147af72a83d1efe7a4addf3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea7f21f00a548546eedf45750c58a01571e039ea7a50d00f81863ca072e7952f
MD5 cf13c5b0015212faf0288b0fa16a2b7b
BLAKE2b-256 d02bef0f8c94258caf604ba7b9b16ece0c2da6267334f84b26d118e404241667

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7556a22380de04c6afe26441bf3c19f3f13d3da06e5a1ef24e788087b9e26f17
MD5 75bb8add96020dedba6446404a01039a
BLAKE2b-256 8066fc0b9211e048d3929e5f66821a6d95577149cd73db72afa43648d632d686

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2eaef19e4e5d5b4e727c1b118d0fd6618ed07fe8e3efe9b49bc4f94aeaf4116e
MD5 b90a26f55d4b2b6ecd54abe49cacd1e7
BLAKE2b-256 aeba1ee019b388362e4f8a52b1fdcd5fa6053b93e4a24b004e05fe6987581b39

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0bf6f9edad10a394f64c777e309cfb1e3501207864226c13203450ada5bbd573
MD5 e77d00b68c2e133c89c3f65e456d671a
BLAKE2b-256 16de8fb52cb31b7a2a532efeac79949eecb344682d32c1d7536cd5f291478f47

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f623197339161b6a423ade70f98d63a29828f0d7405c99cb17d2a3c16800c2fb
MD5 66b8d6f351cfe54ec5406ca313fa9df9
BLAKE2b-256 d8206ee88e7634d46628cb6b48c37d81c23ccfa6b4d3b9f1d966a806b86d91be

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf47c6aea0cae7f8901edada2674441f0a2993c63fa8113dcb8e4e03c20808bc
MD5 8f80a61f11e7e056c0658492645a8b27
BLAKE2b-256 bf3536a9e5751a6442205dfe3250aa9382fd878ca07e3fd1f8d57f025744c6df

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a01eadb708c1515fc7fec08b5ebe19404aef4b98dae4ade124538d3dc9d4f49e
MD5 026b45e76a2209f6190dea3299fee4ad
BLAKE2b-256 ded1dee3ac2af36521a89bede1b9ec23d4ee1335269a5597d09dc3ed436b0f26

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bf55fb66bc434f4f9a485abd9ddf2ea685721903d1c74a373b00183818f37f7e
MD5 b243d9ae4e6ac4f51b53107554007644
BLAKE2b-256 a5abae0d402034bb3912c993e39156e31d9840ad856765a3d41c28839c998065

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 35ca73708ddc3a21a5cdc02b6b83bc6b81f5c6237f0ca172c65f7936f7634278
MD5 2e5388ab2b3db905af6eda08be5128a2
BLAKE2b-256 a59db3c1323fdb5b1d67f39a5fd035869eec87ce5eb893ef1240f2d7c8eb3e46

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4880bbeb435b28d1df691c2d21eaefbf0d49a37ca239cfab0649e164d8072bf7
MD5 247cc6989b2d4dc75178adbfa75baecf
BLAKE2b-256 494da4d7760ab7422ae0ff3a05d868fa440a375811f1011733fa8135b0304429

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b533360cf756459134a4ef4f007e4fe7a362cb86383e0f4e82a56227d49ac08f
MD5 250fa317022846b9cf636d6545952472
BLAKE2b-256 d8df63b4d236116447429363bd0c43bc7f4841f04a9142ab2dcc31383ac44e7d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3d61636fa43b62d9a6c945cfb3e5ecf3fcbabf865134f76de6c69c8ffd612d58
MD5 9697691d9da3d2f54566bea5cecb0035
BLAKE2b-256 28b7120b7ec3df13afb82e8c744d737fab98358618d2ae5173ba7e672a59a025

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 20a7cf5642703b2d8a85614e1357cf7c0877d5ee65a7126bdae02e37eabbc0fa
MD5 2444fc8a75cc560ae2cc18d0676685a9
BLAKE2b-256 12bb37a47e5b257a4d9a47e576f544b2beb812b1e48dd9f4d459d8145ef56b0b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 18f53fe2b8e4c8297a8d6cad5e5b9565866332cf81cc0a590d78157214efcd6a
MD5 8dd2aa2dd5d7e87b36522753b3fabe4e
BLAKE2b-256 095b371e566a33e014d5a7e6e696655e1a75686ccdbe81938efa043085cd42f5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 027299a8812732e30c85108b85862e0db0c295d93df6761949f73c9377bde0cb
MD5 933a7e929ec8251d1424ae359aaa8ca0
BLAKE2b-256 260e156b2e01aa42509f0f17d8a80633d900a849dd37f64ef6eb7c9086914097

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 48bccb04d7dac227fd612b5af2c395b6695a18d5e5ad62cf7e13eeeb1eb0011a
MD5 f2bfd3ee259f764815db04063e661c71
BLAKE2b-256 cedb509471c832a2ff659472ff4ad07f842ba8dfb54a1cc5fb643fede07df5a3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 773edc37b336dd193488f7efcc8716d34a0a5c26b0adebd8858649c883ce7cdb
MD5 ed5acde0d72ea6aac3c9430417521d40
BLAKE2b-256 4827320fb1bfbbebd36483fb607f41fb2d106ce53bb7c5707d83e207554bff9b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a7ebac89416ea2d3cc45584d89a1fbd7fefe2641d3195114dad8155bd361763a
MD5 167734a7c0f5e8806845673b11c83a25
BLAKE2b-256 be0f3900be25b7597887858bce4db49604cf1c1d6da046d01b79c22b2c6e2e1c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302021674421262-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 97eeb0bfc82ce89c53b03b3def9f340cec9421c2c22b3c2f1b333f1c07a73829
MD5 e3d11d7c718c269f3707ed4467ebf187
BLAKE2b-256 cd64ecc0e15c83c3cd69aa0efec3e625fe3476f1f0da189b6df55cce2f5afa38

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page