Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp311-cp311-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp310-cp310-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp39-cp39-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp38-cp38-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d8a5d90d6a13b9b3dc62402d1a119624fd200d816dd82eea3d1256b098b0060b
MD5 bb934cc753fbc28918ed69c9d065c37b
BLAKE2b-256 29c8118a8888f32bb9e01831cfb8a3ca7fa46cf1a26b8baeaecb00003f6a43a3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8823b115f79edd4d006c698fad2e04699cdd83ffd8e35cd6d7a7bf97e7b75c78
MD5 751f572deb6e35eabdda77308bb2828b
BLAKE2b-256 3ea51eb8b8e734132a23ceedde4f9f14c18220f01e04d3a8bf0d35ddb41f8303

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f6d21e083b9b58081f986ac36aeee0c97fb1dda68551aab1a4bf99a710322580
MD5 5d07b30edd0f458cd5b1462662e374b3
BLAKE2b-256 cf970130bf5b818092727fefeebb901749a63ccd736e6e6c9aff64a4745d169b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 775a7dea23410fcdb62e64fdbda4abeb252a22052ff38ced7765790e9ee76960
MD5 7d1e4195e2b93328bc6213348bbfa287
BLAKE2b-256 bfc569fc3b6f500298d815ce4cea571e67a87c4de5889e67a354e9b84f9a8f94

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8395aaf6af5806c994087395f4c4b570242bea7d250444c33f944084f738a92c
MD5 282620f7fa6ea12a1f0885f4c6de6899
BLAKE2b-256 0631aaed2389136da319e9d9b214d8e6faac47b8b8ed03ac894061d3a4716d27

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c5f18c8abfcbabeccb61a7a721ca00861a695e2c00ec69dd763d356c9b775251
MD5 fba2ecb33edfccb1e95b6b4a61957035
BLAKE2b-256 5ec6dea2146035df80361b3d20ca86366b7c38a513f962f2c338ae6fdd13abba

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c85376a5155612693449db7b7537f65b7d9003c0ba142b3ec3c746da05770dae
MD5 728a3e2ad1ba7bbcc444394df8814f6b
BLAKE2b-256 9f45cd6f23e85929c5301cc8a59d5090dc5bec28d0cd0e426115b3518639f957

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c9cabef97dc49316eb953d959187c0838a1bd7a4284b0c9938e325eddefdc4f7
MD5 185bb59ee789d23a126c7b6c1542a22c
BLAKE2b-256 04c95120dcaf1646d4425e83252f930b2ef2df7165c2e06c9c6ca69eda873939

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ef1119b6b16fdc0293a5c829c36dbe1e2bfb1defe0b568d757405212d9cfca5
MD5 f4a729559052ba537aa5c91f3b3659de
BLAKE2b-256 1963c6824491dad38f4e4da543e02b8131d24c4cfa76c82fdad6e5a6ec30458a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d37a94dde0c1b1729758bcf0d8570d499d16319a40f0eef1bb31ecc33c6c12f1
MD5 a0bf708c6964a1b8156683ba785fe309
BLAKE2b-256 5fcee0e0b09b27f1c7af04d7a74dd5b76589e14719c2ae448a34e546c4792c24

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1bcffa259eb48b32d88033d3cacf29beee26dae7f41c3e51de0d00ad37569016
MD5 845e8149febde0d23416195e3bba6284
BLAKE2b-256 7b5c41621600720e36dc47f872b2e4abf179c53d8e258c16a4fdface14ff78f0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c40c6873e2b6f4e00559b51543dc1b04b44afdf91b459f3e0eaf2c8f08606573
MD5 39fe69a8a93e0ca298f5bd34cc50f564
BLAKE2b-256 ddfe433de99279aa57e2f37673941afc30add6845b5e65f7d7da7a0c640150cd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ec5508766eb29e7927496effd3f51ba592241b50d15625fdc3806a9caa3a514e
MD5 d3365ac16283e5a549b0ca26d513948f
BLAKE2b-256 6e076460023ba2d198313150653bc989eebb5865c14e6a78f7d49116f1ec4bd5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 83cbdd15030f61c89c9a8c407b6ab1b317bd69c9c8d0c614dcf8d371b6fcefee
MD5 0e34f48c37a99c901a12012aaf41aff5
BLAKE2b-256 780d4af50b1b252b52f3a1186b1860d554d624f3898773b76bbe18642e5eb9c3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ebb6b7c92dfbb7d022a42e46ca7357e5fe2336c57df796a168cb51f94c3d4249
MD5 8a083fffdfd64ef514c521439975d8ee
BLAKE2b-256 f68d7159a3ad8ffe8df6b8674b6871f5bcfb5793a16bbcd33fce59d81510d810

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 190afa194390c2e409da808a29005e60e70de6bc45f5333c03e22fea5fb8352e
MD5 506fe20a5b1bf0e521e5b6fdc049ef82
BLAKE2b-256 695a279b645a4f9488274e2f3acaef9544fb8de8f4c17c961e5f22dd0fe32756

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0fda38f43411767b3ffd3f4971bdd538eefa9293c8cce5b34c5a134c06f0a002
MD5 79f04ff7d1a3b3f0dd4377342f644592
BLAKE2b-256 2bf27e40fa7bfa2c651938c1208b298e2904f766738c775b9936c5e243e38c86

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 84468647f68b2e0a9a5c98d8ea2c8b5482e0fd6b446d5259906c57a0daa6c55e
MD5 93cc20637940cadbe2b26cf82f5c1694
BLAKE2b-256 e0f9a951b0f9e2c004e0b088836f954ef42d8c1bc110b414312e453577cba25b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2009eac7ca2466e208b50fb9877ec3bfbb6d194d9a0e195e5f40c5d1a11c8228
MD5 0c3a561a0ae9c2c974aa7b08892985d4
BLAKE2b-256 d3fb984d82fab117bb23bbd2b6d200f825fe960401b27b274e1a990fff1c3a5e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.5.2.9.dev202302031674421262-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b0bc2d224e14edb19bc01a9ae0360b9c86efa96c86308645174b88f29c538e83
MD5 460d4487ae12a288c13ee931424ca134
BLAKE2b-256 1de3d296a38168c7a56e60bac515eb90db338b017c129c44d79aa93d0abacc4a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page